Project Icon

prophet-ruby

Ruby的Prophet时间序列预测库

Prophet.rb是Ruby版的时间序列预测库,源自Facebook的Prophet项目。它支持多重季节性、线性和非线性增长、节假日效应,可处理缺失数据。提供简单和高级API,功能包括异常检测、饱和预测、趋势变点分析和模型诊断。Prophet.rb简化了预测、可视化和模型优化流程,适用于各种数据分析和预测任务。

skforecast - 高效的Python时间序列预测库
GithubPython库scikit-learnskforecast开源项目时间序列预测机器学习
skforecast是一个专门用于时间序列预测的Python库,兼容scikit-learn API的各种回归器。它提供了全面的工具集用于训练、验证和预测,支持单序列和多序列、递归和直接策略等多种预测场景。该库注重快速原型设计、可靠模型评估和生产部署,适用于各类时间序列预测任务。
mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
ruby-fann - Ruby环境下的高性能人工神经网络库
FANNGithubRubyRubyFann人工智能开源项目神经网络
ruby-fann是一个将FANN库集成到Ruby环境的开源项目。它为开发者提供了在Ruby中构建和使用多层人工神经网络的便捷方式,支持全连接和稀疏连接网络。这个库具有易用性、多功能性和高性能的特点。用户可以通过它训练神经网络、保存训练数据和网络状态,还能使用自定义回调函数实现高级训练控制。ruby-fann为Ruby生态系统带来了强大而灵活的神经网络开发能力。
rumale - 使用Ruby的机器学习库,提供类似Scikit-Learn的接口
GithubRubyRumale开源项目支持向量机机器学习线性回归
Rumale是一个Ruby的机器学习库,提供类似Scikit-Learn的接口。支持向量机、逻辑回归、岭回归、Lasso、多层感知器、朴素贝叶斯、决策树、梯度树提升、随机森林、K均值、高斯混合模型、DBSCAN、谱聚类、多维缩放和t-SNE等多种算法。提供简单的安装过程和详细的文档,适合初学者和高级用户使用。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
ruby-openai - 将 Ruby 与 OpenAI API 无缝集成,助力多功能 AI 应用的快速开发
APIDALL·EGPT-4oGithubRuby OpenAIWhisper开源项目
ruby-openai,一款专为 Ruby 开发者设计的开源库,支持 OpenAI API 的多种功能,包括文本生成、语音转写和图像生成。此库使开发者能够简单地集成 GPT、Whisper 等多种模型,无需深入掌握底层技术,便可提升应用程序的智能化程度。适合于快速开发和部署,为现代 Ruby 应用提供强大支持。
Rbeast - 贝叶斯时间序列分解与变点检测工具
BEASTGithub变点检测开源项目时间序列分解贝叶斯算法趋势分析
Rbeast是一款开源的贝叶斯时间序列分析工具,主要用于检测时间序列数据中的变点、趋势和季节性变化。该工具采用贝叶斯模型平均方法,可分解时间序列中的突变、趋势和周期变化。Rbeast适用于遥感、金融、公共卫生等多个领域的实值时间序列分析。它支持R、Python、Matlab和Octave等多种编程环境,安装和使用都较为简便。相比同类算法,Rbeast具有较快的计算速度。
disco - Ruby协同过滤推荐系统库 支持用户和物品推荐
GithubRailsRuby协同过滤开源项目推荐系统矩阵分解
Disco是一个用于Ruby和Rails的推荐系统库,基于协同过滤技术。该库支持用户和物品推荐,可处理显式和隐式反馈数据,并使用高性能矩阵分解算法。Disco提供简洁的API,支持存储推荐结果和模型,能够解决冷启动问题。此外,它可与近似最近邻库集成,提升大规模数据集的性能。
newrelic-ruby-agent - Ruby应用性能监控与分析的开源解决方案
GithubNew RelicRuby agent应用程序监控开源项目性能监控
newrelic-ruby-agent是一个专为Ruby应用设计的性能监控工具。它能够帮助开发者追踪应用性能,识别瓶颈,并收集关键业务数据。这个开源项目兼容多种Ruby版本和框架,可以作为Gem或Rails插件集成到现有项目中。对于寻求提升Ruby应用性能的开发团队来说,是一个值得考虑的选择。
neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号