Project Icon

singa

高效的分布式深度学习系统,支持多平台快速部署

Apache SINGA是一个高效的分布式深度学习系统,支持快速安装和多平台构建。提供丰富的示例和开发资源,可以在最新文档和代码分析中了解更多信息,并通过JIRA提交问题反馈。探索如何利用Apache SINGA实现高效的深度学习解决方案。

jina - 帮助开发者构建和部署多模态AI应用的开源框架
DeploymentExecutorGithubJina云原生技术多模态AI开源项目热门
Jina是一个强大的开源框架,帮助开发者构建和部署多模态AI应用。它支持通过gRPC、HTTP和WebSockets通信,并且可以轻松扩展和部署到生产环境。无需担心底层基础设施的复杂性,开发者可以专注于逻辑和算法。Jina支持任何数据类型和主流深度学习框架,提供Pythonic体验,从本地部署到使用Docker-Compose、Kubernetes或Jina AI Cloud的高级编排。此外,Jina的流水线功能允许多个微服务容器化并独立扩展,实现高性能服务设计。
smile - Java与Scala的高性能机器学习引擎
GithubSmile分类算法开源项目数据可视化机器学习自然语言处理
Smile是一个高效且全面的机器学习系统,支持Java和Scala,包含自然语言处理、线性代数、图形、插值和可视化功能。其先进的数据结构和算法提供卓越性能,涵盖分类、回归、聚类、关联规则挖掘、特征选择、多维缩放、遗传算法、缺失值插补和高效近邻搜索等领域。用户可以通过Maven中央库使用,并在Smile网站找到编程指南和详细信息。
TonY - 在 Apache Hadoop 上原生运行深度学习框架的框架
GithubHadoopPyTorchTensorFlowTonY开源项目深度学习
TonY框架支持在Apache Hadoop上运行深度学习任务,兼容TensorFlow、PyTorch、MXNet和Horovod。支持分布式或单节点训练,提供灵活可靠的机器学习任务执行方式,适用于Hadoop 2.6.0及以上版本,并支持GPU隔离。项目通过Gradle构建,可通过虚拟环境或Docker容器启动深度学习作业。详细配置和使用案例请参阅官方文档和示例。
spark - 统一分析引擎 支持多语言API及丰富工具集
Apache SparkGithub分布式计算大数据处理开源项目数据分析机器学习
Apache Spark是一个大规模数据处理的统一分析引擎,提供Scala、Java、Python和R的高级API。它支持多种高级工具,如Spark SQL、pandas API on Spark、MLlib、GraphX和Structured Streaming,分别用于SQL查询、pandas操作、机器学习、图处理和流处理。Spark的优化引擎支持通用计算图,适用于多种大数据分析场景。
deeplearning4j - 多语言与硬件兼容的JVM深度学习框架
DataVecEclipse Deeplearning4JGithubND4JSameDiff开源项目深度学习
DL4J生态系统为JVM应用提供全方位深度学习支持,覆盖数据预处理、模型构建与优化。支持多种编程语言和硬件平台,包括DL4J、ND4J、SameDiff和DataVec模块,兼容Keras和TensorFlow模型并支持分布式训练。适用于Windows、Linux和macOS,提升JVM深度学习应用能力。了解更多信息,请访问官方文档。
caffe - 一个用于深度学习的快速开放框架
BAIRBVLCCaffeGithub开源项目模型动物园深度学习框架
Caffe是由伯克利AI研究中心和社区贡献者开发的深度学习框架,强调高效表达、速度和模块化。用户可以通过项目网站获取详细信息,包括DIY深度学习教程、文档、参考模型和社区模型库。Caffe提供多种自定义版本,例如优化CPU和多节点支持的Intel Caffe、适用于AMD和Intel设备的OpenCL Caffe,以及Windows Caffe。社区用户可通过Gitter聊天和Google论坛进行交流,提交问题和建议。项目遵循BSD 2-Clause许可证,鼓励在研究中引用。
djl - 简洁易用的Java深度学习框架,支持多引擎切换
Deep Java LibraryGithubJava框架开源开源项目机器学习深度学习
Deep Java Library (DJL) 是一个开源、高级、与深度学习引擎无关的Java框架,提供简单易用的深度学习体验。Java开发者无需成为机器学习专家即可使用现有技能构建、训练和部署模型。DJL支持自动选择CPU/GPU并提供最佳性能,用户可以随时在项目中切换引擎。其符合人体工程学的API接口指导用户完成深度学习任务,支持从模型加载到训练和推理的全流程操作,简化深度学习模型的集成。
h2o-3 - 支持多编程语言的高性能内存中分布式机器学习平台
GithubH2O-3分布式机器学习开源资源开源项目模型部署算法
H2O-3是一个支持多编程语言的高性能内存中分布式机器学习平台,提供广泛的算法如GLM、随机森林、深度神经网络等,并可扩展以添加自定义算法。平台与Hadoop和Spark等大数据技术完美整合,可通过POJO或MOJO格式轻松导出模型至生产环境,适合各类数据科学家在大数据场景下进行机器学习开发。
BigDL-2.x - BigDL提供多种库实现数据分析与AI应用的无缝扩展
BigDLGithubIPEX-LLMLLMNanoOrca开源项目
BigDL提供多种库,用于扩展和加速数据分析与AI应用。主要功能包括分布式大数据和AI的Orca,加速TensorFlow和PyTorch的Nano,深度学习的DLlib,时间序列分析的Chronos,推荐系统的Friesian以及安全大数据和AI的PPML。这些功能使AI应用可以从本地计算机无缝扩展到云端,实现高效分布式数据处理和深度学习开发。
MegEngine - 高效、可扩展且易于使用的深度学习框架
GithubMegEngine开源项目深度学习框架硬件需求训练与推理高性能
MegEngine是一个高效、可扩展且易于使用的深度学习框架,具有统一的训练和推理框架、低硬件要求和跨平台高效推理的三大关键特性。支持x86、Arm、CUDA、RoCM等多种平台,兼容Linux、Windows、iOS、Android等系统。通过DTR算法和Pushdown内存规划器,大幅降低GPU内存使用。适用于模型开发到部署的各个环节,致力于构建开放友好的AI社区。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号