Project Icon

pytorch-doc-zh

PyTorch深度学习库中文文档与教程,支持GPU和CPU优化

提供最新的PyTorch中文文档与教程,涵盖深度学习和张量优化,支持GPU和CPU。包括2.0版本中文翻译、最新英文教程和文档,以及丰富的学习资源和社区支持,适合希望深入了解和使用PyTorch的中文用户。

TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
torch2trt - PyTorch模型转TensorRT加速工具
GPU加速GithubPyTorchTensorRTtorch2trt开源项目模型转换
torch2trt是一款将PyTorch模型转换为TensorRT的开源工具。它基于TensorRT Python API开发,具有简单易用和灵活可扩展的特点。用户通过单个函数调用即可完成模型转换,还支持自定义层转换器。该工具适配多种常用模型,并提供模型保存和加载功能。torch2trt能显著提升NVIDIA设备上的模型推理性能,适用于PyTorch模型推理加速场景。
torchdyn - PyTorch数值深度学习库,支持微分方程和数值方法
GithubPyTorchTorchdyn开源项目微分方程数值方法深度学习
Torchdyn是一个专注于数值深度学习的PyTorch库,涵盖微分方程、积分变换和数值方法。它提供便捷的工具和层,用于构建神经微分方程和复合模型,并支持GPU加速和多种数值方法。该库与PyTorch和pytorch-lightning高度集成,使得用户能够快速上手,推进研究和应用。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
intel-extension-for-pytorch - 通过最新优化提升Intel硬件的深度学习性能
AIGPUsGithubIntel® Extension for PyTorchLLMs优化开源项目
Intel® Extension for PyTorch* 提供优化功能,利用Intel® AVX-512 VNNI、AMX以及XMX AI引擎,提升Intel CPU和GPU上的深度学习性能。该扩展优化了大规模语言模型(LLMs),如LLAMA、GPT-J、GPT-NEOX等,支持多种量化方法(如FP32、BF16、INT8、INT4)。此外,自2.3.0版本起,还引入了模块级优化API,为定制模型优化提供了更多选项。
pytorch-llama - 基于PyTorch的LLaMA 2模型实现
GithubLLaMA 2PyTorch人工智能开源项目深度学习自然语言处理
pytorch-llama项目提供了LLaMA 2模型的PyTorch实现。该项目展示了使用PyTorch框架构建大型语言模型的过程,为开发者提供了理解和定制LLaMA 2的学习资源。通过这个项目,研究人员和工程师可以深入了解LLaMA 2的工作原理,并在此基础上进行进一步的实验和创新。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
pytorch_memlab - PyTorch CUDA内存分析与优化工具
CUDAGithubPyTorchpytorch_memlab内存管理开源项目性能分析
pytorch_memlab是一个针对PyTorch的CUDA内存管理工具,提供内存分析器和内存报告器等功能。它可以帮助开发者诊断内存溢出问题,理解底层内存机制。该工具支持逐行内存分析、张量内存使用报告,以及将CUDA张量临时移至CPU内存等特性。pytorch_memlab能够协助开发者优化内存使用,提升PyTorch项目性能。
pytorch-sentiment-analysis - 使用PyTorch进行电影评论情感分析的教程
GithubPyTorchPython 3.9开源项目情感分析教程神经网络
该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。
annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
GANGithubPyTorchReinforcement LearningTransformerlabml.ai开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号