Project Icon

DFN2B-CLIP-ViT-L-14

基于CLIP架构的大规模数据集训练图像识别模型

DFN2B-CLIP-ViT-L-14是一个基于CLIP架构的图像识别模型,采用数据过滤网络从128亿图像-文本对中筛选20亿高质量样本进行训练。该模型在多个基准测试中平均准确率达66.86%,可用于零样本图像分类等任务。模型提供OpenCLIP接口,便于开发者使用。DFN2B-CLIP-ViT-L-14体现了大规模数据集和先进算法在计算机视觉领域的应用,为图像理解提供有力支持。

CLIP-ImageSearch-NCNN - 利用CLIP快速进行手机相册中的自然语言图像搜索
CLIPGithubncnn图片搜索开源项目模型自然语言检索
CLIP-ImageSearch-NCNN项目在移动设备和x86平台上使用CLIP模型实现了自然语言图像检索功能。通过图像和文本特征提取,支持以图搜图、以字搜图等多种搜索方式,提供高效的图像搜索体验。项目包含适用于Android和x86平台的demo,利用ncnn进行部署,广泛适用于手机相册等图像搜索应用。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
GithubHuggingfaceRegNetY图像分类开源项目数据集模型特征提取预训练
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
AI-generated_images_detector - 高精度AI生成图像检测模型,适用于图像分类任务
AI-generated_images_detectorGithubHuggingface准确率图像分类开源项目模型训练和评估数据
该高精度AI生成图像检测模型专注于图像分类,适用于imagefolder数据集验证。模型训练后达到了0.9736的准确率,能够有效区分生成与真实图像。通过transformers库中的pipeline进行推理,只需将图像传递给模型即可获得分类结果,适用于对图像分类精度要求较高的应用,能够有效提升AI生成内容的识别能力。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
Clip Interrogator AI - 多模态图像分析和描述生成系统
AI图像分析AI工具CLIP Interrogator图像描述生成机器学习自然语言处理
Clip Interrogator AI是一个集成BLIP和CLIP模型的图像分析系统。它能自动解析图像内容,生成详细的文本描述和标签。通过基础说明和'Flavors'系统,Clip Interrogator AI提供全面的图像解释。这一工具适用于需要深入理解或复制图像风格的场景,为AI图像生成提供精确提示。作为web应用,Clip Interrogator AI简化了复杂的图像分析过程。
deit3_base_patch16_224.fb_in1k - ImageNet-1k图像分类与嵌入的DeiT-III解决方案
DeiT-IIIGithubHuggingfaceImage EmbeddingsImageNet-1k图像分类开源项目模型模型比较
DeiT-III是一款经过ImageNet-1k训练的图像分类和嵌入模型,拥有86.6M参数以及17.6 GMACs。该模型可以进行图像特征提取与多任务处理,适用于各种视觉应用。对于图形识别及计算机视觉项目的从业者而言,其为ViT提供了一个新的升级途径。
Kolors-IP-Adapter-Plus - 增强图像细节保留与训练数据多样性
GithubHuggingfaceKolors-IP-Adapter-Plus中文提示图像特征提取开源项目模型视觉吸引力高质量训练数据
Kolors-IP-Adapter-Plus采用Openai-CLIP-336模型提升图像细节保留能力,同时通过大规模高质量的训练数据提升生成效果。其在超过200张测试图像中获得图像专家的高度评价,体现出优良的图像真实度和视觉吸引力,并在多项评估指标中表现优异,适用于需要高精确度和输出多样性的应用场景。
internlm-xcomposer2d5-7b-4bit - 简化大型语言模型的文本与图像处理新纪元
4位量化模型GithubHuggingfaceInternLM-XComposer开源项目文本图像理解模型视频理解长上下文能力
InternLM-XComposer2.5在文本与图像理解领域展现非凡性能,其应用灵活性媲美GPT-4V,仅靠7B参数即可完成复杂任务。模型通过24K图文上下文训练与96K扩展能力,适用于大量输入输出任务。此外,项目提供了4-bit量化模型来有效降低内存消耗,并支持使用Transformers快速集成,涵盖从视频理解到多图对话的多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号