Project Icon

sbx

Jax加持的Stable-Baselines3强化学习库

SBX是Stable-Baselines3的Jax实现版本,集成了SAC、TQC、PPO等多种先进强化学习算法。它与SB3保持相同API,可与RL Zoo无缝对接,并提供详细使用示例。SBX为复杂环境和任务提供高效、可靠的强化学习实现。

ReinforcementLearning.jl - 高性能Julia强化学习框架
GithubJuliaReinforcementLearning.jl开源项目强化学习机器学习
ReinforcementLearning.jl是Julia语言开发的强化学习框架,提供精心设计的组件和接口。研究人员可轻松实现新算法、进行基准测试和算法比较。框架支持从传统表格方法到深度强化学习,注重实验可重复性。其核心设计原则包括可重用性、可扩展性和易用性,适合各类强化学习实验和研究。
nnabla-rl - 深度强化学习库,基于Neural Network Libraries构建
GPU加速GithubPythonnnablaRL开源项目深度强化学习神经网络库
nnabla-rl是基于Neural Network Libraries构建的深度强化学习库,适用于研究、开发和生产环境。该库提供简洁的Python API,集成多种经典和前沿强化学习算法,实现在线与离线训练的灵活切换。nnabla-rl支持通过nnabla-browser可视化训练过程,安装便捷,兼容GPU加速,并提供交互式示例便于快速上手。
RLcycle - 开源强化学习框架 提供多种算法实现
GithubHydraPyTorchRayWandB开源项目强化学习
RLcycle是一个开源的强化学习框架,实现了多种经典算法如DQN、A2C/A3C、DDPG和SAC。框架基于PyTorch构建,集成了Hydra配置管理、Ray并行计算和WandB日志记录功能。RLcycle提供可重用组件便于快速开发,支持Atari和PyBullet等环境,并附有使用指南和性能基准。该项目适合研究人员和开发者学习和实践各类强化学习算法。
sheeprl - 基于PyTorch的强化学习框架支持多种算法和环境
GithubLightning FabricPyTorchSheepRL开源项目强化学习算法实现
SheepRL是一个基于PyTorch和Lightning Fabric的强化学习框架。它支持PPO、SAC、Dreamer等多种算法,以及Atari、MuJoCo、Minecraft等多种环境。该框架易用可扩展,实现了算法与环境的解耦,适用于广泛的强化学习任务。在部分基准测试中,SheepRL展现出与其他框架相当甚至更优的性能,为强化学习研究和开发提供了高效工具。
pytorch-rl - Pytorch中的深度强化学习算法实现
GithubOpenAI GymPytorch开源项目强化学习机器人任务深度学习
pytorch-rl项目在Pytorch中实现了多种深度强化学习算法,适用于连续动作空间。用户可以在CPU或GPU上高效训练这些算法,并与OpenAI Gym无缝集成。支持的算法包括DQN、DDPG、PPO等,涵盖环境建模和参数空间噪声探索等功能。
axon - 基于Nx框架的Elixir深度学习库,支持模型创建和训练
AxonElixirGithub开源项目模型创建深度学习训练API
Axon是一个基于Nx的Elixir深度学习库,提供高效的神经网络功能。核心组件包括数值定义的Functional API、模型创建的Model Creation API和训练模型的Training API。Axon通过模块化设计,实现各API独立使用,并通过Polaris进行优化。该库支持多种深度学习层和模型格式,如TensorFlow Lite和ONNX,适用于多种深度学习应用。
keras - 多后端支持的深度学习框架,兼容JAX、TensorFlow和PyTorch
GithubJAXKeras 3PyTorchTensorFlow开源项目深度学习框架
Keras 3 提供高效的模型开发,支持计算机视觉、自然语言处理等任务。选择最快的后端(如JAX),性能提升高达350%。无缝扩展,从本地到大规模集群,适合企业和初创团队。安装简单,支持GPU,兼容tf.keras代码,避免框架锁定。
penzai - 用于构建、编辑和可视化神经网络的 JAX 研究工具包
GithubJAXPenzai开源项目模型可视化深度学习神经网络
Penzai是一个基于JAX的库,专为通过函数式pytree数据结构编写模型而设计,并提供丰富的工具用于可视化、修改和分析。适用于反向工程、模型组件剥离、内部激活检查、模型手术和调试等领域。Penzai包括Treescope交互式Python打印工具、JAX树和数组操作工具、声明式神经网络库及常见Transformer架构的模块化实现。该库简化了模型处理过程,为研究神经网络的内部机制与训练动态提供了支持。
autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
dm_pix - 基于JAX的高性能图像处理库
GithubJAXPIX图像处理平行优化开源项目机器学习
PIX是一个基于JAX的开源图像处理库,具备优化和并行化能力。支持通过jax.jit、jax.vmap和jax.pmap进行加速与并行处理,适用于高性能计算需求。安装便捷,只需通过pip安装后即可使用。提供丰富的示例代码,易于上手操作,同时配备完整的测试套件,确保开发环境的可靠性,并接受社区贡献。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号