Project Icon

kaggle_pipeline_tps_aug_22

开源Python框架简化Kaggle表格数据竞赛流程

这是一个面向Kaggle表格数据竞赛的开源Python框架。它集成了数据处理、可视化、特征工程、模型训练等功能的API。虽然最初为Kaggle TPS August 2022设计,但经简单调整可适用于其他表格数据竞赛。该框架涵盖了从数据预处理到提交预测结果的完整机器学习流程,为Kaggle参赛者提供了实用的工具支持。

batchflow - 高效灵活的大规模数据处理和机器学习框架
BatchFlowGithub开源项目数据处理数据流水线机器学习神经网络
BatchFlow是一个专为大规模数据处理和复杂机器学习流程设计的Python库。它提供灵活的批处理生成、确定性和随机管道、数据集合并等功能。支持多种深度学习模型,并具有丰富的层和辅助函数,方便自定义模型。其懒加载机制和高效批处理策略适用于处理超出内存容量的大型数据集,是数据科学和机器学习项目的理想工具。
SynapseML - 简化大规模机器学习管道的开源工具
Apache SparkGithubSynapseML开源项目异常检测文本分析机器学习
SynapseML是一个开源库,旨在简化大规模机器学习管道的创建。它提供简单、可组合和分布式的API,支持文本分析、视觉处理、异常检测等多种任务。基于Apache Spark,SynapseML与SparkML/MLLib共享相同的API,能够无缝集成到现有的Spark工作流中。该库支持Python、R、Scala、Java和.NET,适用于各种数据库和云数据存储,助力构建智能系统。
lazypredict - 自动化机器学习模型评估工具
GithubLazy PredictPython库开源项目机器学习模型评估自动化建模
LazyPredict 是一个开源的 Python 库,用于机器学习自动化。它能快速构建和比较多种模型,支持分类和回归任务,无需复杂的参数调优。通过自动训练多个模型并生成性能报告,LazyPredict 帮助识别最适合特定数据集的模型类型,适用于初步评估和基准测试,显著提高了数据科学工作流程的效率。
tfx - 基于TensorFlow的生产级机器学习流水线平台
Apache AirflowGithubGoogleTFXTensorFlow开源项目机器学习平台
TFX是Google开发的基于TensorFlow的生产级机器学习平台,提供配置框架来搭建多个TFX组件的机器学习流水线。该流水线可以用Apache Airflow和Kubeflow Pipelines进行编排,组件和编排系统都可扩展,支持ML Metadata后端来实现实验追踪和模型热启动等高级功能。TFX适用于Python 3.9至3.10,兼容多种主要依赖库。
ploomber - 快速构建和部署数据流水线的开源框架
GithubJupyterPloomber开源项目数据管道机器学习部署
Ploomber是一个开源的数据流水线构建框架,支持多种主流编辑器进行交互式开发。它可以无缝部署到Kubernetes、Airflow等平台,提供YAML和Python API,具备自动缓存和笔记本重构功能。Ploomber适用于各级数据科学工作者,能显著提升数据处理效率。
kfp-tekton - Kubeflow Pipelines与Tekton集成的开源机器学习工作流平台
CI/CDGithubKubeflow PipelinesKubernetesTekton开源项目机器学习工作流
kfp-tekton是一个将Kubeflow Pipelines与Tekton后端集成的开源项目。它允许用户使用Kubeflow Pipelines DSL创建管道,并将其编译为Tekton YAML。该项目提供SDK编译器、API服务和用户界面,支持端到端的机器学习工作流程,包括日志记录和工件跟踪。基于Kubeflow Pipelines和Tekton的最新版本,kfp-tekton为机器学习从业者提供了一个可扩展且可移植的管道解决方案。
pycaret - 开源的低代码Python机器学习库,能够简化和自动化机器学习工作流程
GithubPyCaretPython低代码开源开源项目机器学习
PyCaret是一个开源的低代码Python机器学习库,能够简化和自动化机器学习工作流程。通过减少代码量,PyCaret使实验更高效、更快速。它支持scikit-learn, XGBoost, LightGBM, CatBoost等多种机器学习框架,用户可以通过少量代码完成模型训练、评估和预测。无论是经验丰富的数据科学家,还是对低代码解决方案感兴趣的用户,PyCaret都是理想选择。
pandas - Python数据分析与处理的开源利器
DataFrameGithubPythonpandas开源开源项目数据分析
pandas是Python生态系统中的核心数据分析库,提供高性能、易用的数据结构和工具。它支持处理结构化数据,包括数据清洗、转换、合并、分组分析等操作。pandas可读写多种格式的数据源,如CSV、Excel、SQL数据库等。作为开源项目,pandas由活跃社区维护,持续优化以满足数据科学家、分析师和开发者的需求。
pykale - 改进多模态机器学习的高效绿色解决方案
GithubPyKale多模态学习开源项目机器学习深度学习迁移学习
PyKale通过简化数据、软件和用户之间的连接,使跨学科研究的机器学习更容易访问。它专注于多模态学习和迁移学习,支持图像、视频和图形的数据类型,涵盖深度学习和降维模型。PyKale遵循绿色机器学习理念,通过减少重复、再利用资源和回收学习模型,实现高效和可持续的研究。适用于生物信息学、图像和视频识别及医学成像,利用多源知识做出准确且可解释的预测。
PandasAI - 开源AI数据分析工具实现企业数据对话
AI工具PandasAI企业数据开源工具数据分析自然语言处理
PandasAI是一个开源AI数据分析Python库,将生成式AI能力集成到pandas中,使数据框架支持对话。用户可用自然语言查询企业数据,获取实时洞察和数据可视化。支持多种数据源,提供增强分析、可操作洞察和详细报告。PandasAI旨在简化数据分析,助力数据驱动决策,为企业提供稳定、可靠、可扩展的内部数据分析方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号