Project Icon

kaggle_pipeline_tps_aug_22

开源Python框架简化Kaggle表格数据竞赛流程

这是一个面向Kaggle表格数据竞赛的开源Python框架。它集成了数据处理、可视化、特征工程、模型训练等功能的API。虽然最初为Kaggle TPS August 2022设计,但经简单调整可适用于其他表格数据竞赛。该框架涵盖了从数据预处理到提交预测结果的完整机器学习流程,为Kaggle参赛者提供了实用的工具支持。

kaggle-api - Python实现的Kaggle API命令行工具
GithubKaggle APIPython依赖管理命令行工具开发环境开源项目
Kaggle-api是Kaggle官方开发的Python 3 API工具,通过命令行界面实现与Kaggle平台的交互。用户可以查看模型列表、管理数据集等。项目采用hatch进行管理,支持源代码编译和集成测试。遵循Apache 2.0许可证,为数据科学工作者提供了便捷的Kaggle资源访问途径。
nyaggle - Kaggle和数据科学竞赛的Python工具库
Githubnyaggle实验追踪开源项目机器学习特征工程验证
nyaggle是一个面向数据科学竞赛的Python工具库,专注于实验跟踪、特征工程和模型验证。它提供实验追踪、集成学习、特征存储等功能,支持高级API进行交叉验证实验。该库还包含目标编码、BERT文本向量化等特征工程工具,以及对抗验证和时间序列分割等验证方法,是Kaggle等竞赛中的实用助手。
pipelines - 基于Kubernetes的机器学习工作流程编排平台
GithubKubeflowKubernetes工作流程开源项目机器学习管道
Kubeflow Pipelines是基于Kubernetes的机器学习工作流程编排平台,旨在简化ML工作流的部署和管理。该平台提供端到端的编排功能,支持快速实验和组件复用,便于构建完整的ML解决方案。通过Kubeflow Pipelines SDK,开发者可创建可重用、可扩展的ML管道,提高ML项目的效率和可管理性。
kaggle-solutions - Kaggle竞赛解决方案及创意全面收录
GithubKaggle开源项目数据分析数据科学竞赛机器学习解决方案
kaggle-solutions项目收录了众多Kaggle竞赛顶级选手的解决方案和创意。项目在每次竞赛结束后更新,提供历届竞赛解决方案和想法的搜索功能。用户可通过fork仓库访问学习,并用Markdown记录笔记。项目推荐关注竞赛描述、评估标准和数据等关键信息,欢迎贡献未收录的解决方案。
tpot - 基于遗传算法的自动机器学习管道优化工具
GithubTPOT开源项目机器学习管道优化自动化遗传算法
TPOT是一个开源的自动机器学习工具,基于Python开发。它采用遗传算法来优化机器学习管道,能够自动探索大量可能的管道组合,为给定数据集找到最佳模型。TPOT构建于scikit-learn之上,可生成易读易修改的Python代码。该工具支持分类和回归任务,适用于多种数据科学场景,能够有效减少数据科学家在模型选择和参数调优上的时间投入。
AutoMLPipeline.jl - Julia机器学习管道构建和优化工具
AutoMLPipelineGithub开源项目机器学习特征工程管道优化集成学习
AutoMLPipeline工具包用简洁表达式构建复杂机器学习管道。它基于Julia宏编程实现符号化处理,便于优化回归和分类模型结构。主要特点包括符号化API、常用库封装、可扩展架构、元集成学习和特征选择。该工具简化了从数据预处理到模型训练的流程,支持多种算法组件。
competition-baseline - 为数据科学入门者及爱好者提供基本的、易于理解的代码,支持参与国内外数据竞赛
AI换脸Github人工智能开源项目数据竞赛海上风电出力预测科大讯飞
competition-baseline为数据科学入门者及爱好者提供基本的、易于理解的代码,支持参与国内外数据竞赛。涵盖机器学习至深度学习等领域,适用于多种场景,如AI换脸、海上风电及人脸识别等,促进开源学习文化发展及技术应用能力提升。
kedro - 生产级数据科学与工程管道框架
GithubKedro开源项目数据目录数据科学管道抽象项目模板
Kedro是一个开源Python框架,为生产环境中的数据科学项目提供支持。该框架整合了软件工程最佳实践,用于构建可重现、易维护和模块化的数据工程及科学管道。Kedro特性包括标准化项目模板、多功能数据目录、管道抽象、严格的编码规范以及灵活的部署选项。框架致力于促进团队协作,提升工作效率,并推动可复用分析代码的开发。Kedro尤其适合处理大规模原始数据的实际机器学习应用,有效克服了Jupyter笔记本和单次脚本的局限性。
AlphaPy - 多功能机器学习框架 整合市场分析与体育预测
AlphaPyGithub开源项目数据科学机器学习金融分析预测模型
AlphaPy是一个基于Python的综合机器学习框架,集成了scikit-learn、Keras和XGBoost等多种先进模型。它不仅提供集成模型生成功能,还包含MarketFlow和SportFlow等专用工具,用于市场分析和体育赛事预测。此外,AlphaPy支持交易系统开发和投资组合分析,为数据科学家和金融分析师提供了全面的解决方案。
kubeflow - 简单、可移植且可扩展的Kubernetes上的AI/ML平台
AIGithubKubeflowKubernetes开源项目机器学习
Kubeflow项目专注于在Kubernetes上简化、可移植且可扩展的AI/ML解决方案。它包含多个开源组件,支持机器学习生命周期的各个阶段,如模型服务、实验管理和数据流水线等。提供丰富的官方文档和社区支持,用户可以通过GitHub获取详细信息和技术支持,这是构建AI/ML应用的理想工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号