Project Icon

streamlit_prophet

交互式时间序列预测工具助力数据分析

streamlit_prophet是一款开源的时间序列预测工具,集成了Streamlit的交互功能和Prophet的预测算法。它提供了简洁的用户界面,支持数据上传、预处理、模型调参、评估和预测等功能。兼容Python 3.7-3.9版本,streamlit_prophet通过可视化界面简化了时间序列预测过程。这个工具适用于数据分析师和业务人员,可快速部署并用于各类预测分析任务。

tsfresh - 时间序列特征自动提取和分析的Python开源工具
GithubPythontsfresh开源项目时间序列机器学习特征提取
tsfresh是一个开源Python库,专注于时间序列数据的自动特征提取。它集成了统计学、时间序列分析、信号处理和非线性动力学的算法,并提供了特征选择机制。该工具可处理多种采样数据和事件序列,提供100多种预定义特征,并通过内置过滤程序评估特征重要性。tsfresh支持回归和分类任务,兼容sklearn、pandas和numpy,可在本地或集群环境运行,为时间序列分析提供了高效解决方案。
temporian - 高效可靠的时间数据预处理库
GithubPython库Temporian开源项目数据预处理时间数据处理特征工程
Temporian是一个专注于时间序列分析和数据预处理的Python库。它支持多种时间数据类型,包括多变量时间序列、事件日志和跨源事件流。经过优化,Temporian在处理时间数据时的效率可达常规库的1000倍。此外,它还提供了防止数据泄露的功能,并能与现有机器学习生态系统无缝集成,为时间数据处理提供了高效可靠的解决方案。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
ARENA_3.0 - 从基础到高级应用的人工智能实践学习平台
ARENA 3.0GitHubGithubStreamlit人工智能开源项目机器学习
ARENA 3.0项目是一个综合性人工智能学习平台,涵盖深度学习基础、转换器可解释性和强化学习等领域。通过实践练习和Streamlit页面,学习者可构建神经网络、探索机器学习模型内部原理,并开发强化学习代理。该项目注重培养实际技能,帮助学习者应对AI领域的前沿挑战。
PDFChat - PDF文件智能对话工具,提升文档处理效率
GPT3.5GithubOpenAI EmbeddingsPDFChatStreamlitlangchain开源项目
PDFChat是一款利用langchain、OpenAI Embeddings和GPT3.5技术实现与PDF文档对话的工具。通过Streamlit界面,用户能够上传PDF文件并轻松互动,从而简化文档处理。安装指南详尽,包括克隆项目、创建和激活conda环境、安装依赖包以及配置OpenAI API Key。应用程序在本地运行后,即可使用这款便捷的PDF聊天工具。
LTSF-Linear - 线性模型在时间序列预测中的应用
AAAI 2023DLinearGithubLTSF-LinearTransformers开源项目时间序列预测
LTSF-Linear是一个高效的线性模型家族,包括Linear、NLinear和DLinear,专为时间序列预测设计。该模型支持单变量和多变量长时间预测,具有高效率、可解释性和易用性,显著优于Transformer模型。
Chat-With-Excel - 直接自然语言与表格数据互动,简化数据分析流程
Chat-With-ExcelGithubGoogle Colab开源项目数据分析机器学习自然语言处理
Chat-With-Excel项目允许用户使用自然语言与表格数据交互,无需记忆公式或学习Pandas。用户可以通过Google Colab轻松运行数据分析任务,并与机器学习模型进行自然语言训练。即将上线Replit和Streamlit版本。更多更新请关注Anil Chandra Naidu Matcha的Twitter或YouTube频道。项目相关的其他示例和代码包括Chat with Website、Chat with PDF、Chat with Youtube及DiscordGPT。
timeshap - 针对循环模型的时序数据解释框架
GithubShapley值TimeSHAP序列扰动开源项目模型解释递归模型
TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。
Stat.ai - 为Stata用户打造的智能分析助手
AI工具密码注册登录账户重置
Stat.ai是一个为Stata用户开发的AI辅助平台。该平台集成了多种智能工具,旨在显著提高Stata分析工作的效率和准确性。通过运用先进的人工智能技术,Stat.ai能帮助研究人员和数据分析师大幅提升复杂统计分析任务的完成速度,同时保持高精确度。平台简化了数据处理和分析流程,为用户提供更智能、更直观的Stata使用体验,是提升研究和分析效率的理想选择。
CEEMDAN_LSTM - CEEMDAN与LSTM结合的时序预测模型
CEEMDAN_LSTMGithub开源项目数据分解时间序列预测神经网络金融预测
CEEMDAN_LSTM是一个Python模块,结合完整集成经验模态分解(CEEMDAN)和长短期记忆(LSTM)神经网络进行时序预测。该项目提供多种预测方法和评估工具,支持灵活的参数设置,适用于金融等领域的复杂时序数据分析。它简化了分解集成预测的实现过程,有助于研究人员和数据分析师快速构建和优化预测模型。CEEMDAN_LSTM支持多种预测方法,包括单一、集成、分别和混合预测等。它还提供了统计测试、热图绘制和DM测试等模型评估工具,有助于全面分析预测结果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号