Project Icon

schnetpack

原子级系统深度学习建模工具包

SchNetPack是一个开源的深度学习工具包,用于原子级系统建模。它提供了构建和训练神经网络的基础组件,可预测分子和材料的势能面及量子化学性质。该工具包支持SchNet和PaiNN等先进模型,能够计算偶极矩、极化率等多种属性,并集成了分子动力学模拟功能。SchNetPack简化了新模型的开发和评估流程,为原子级机器学习研究提供了有力支持。

deepmd-kit - 深度学习驱动的原子势能建模与分子动力学模拟工具
DeePMD-kitGithub分子动力学势能模型开源项目深度学习高性能计算
DeePMD-kit是一个用Python和C++编写的软件包,专注于简化深度学习原子势能模型和力场的创建和分子动力学模拟。它与TensorFlow及多个高性能MD和量子MD软件包接口,确保高效的训练和计算。模块化设计使其支持多种描述符和高性能并行计算,适用于有机分子、金属、半导体等系统。
torchmd-net - 神经网络势能模型的高效训练与实现框架
GPU加速GithubPyTorchTorchMD-NET分子动力学开源项目神经网络势能
TorchMD-NET是一个先进的神经网络势能(NNP)模型框架,提供高效快速的NNP实现。该框架与ACEMD、OpenMM和TorchMD等GPU加速分子动力学代码集成,并将NNP作为PyTorch模块提供。项目支持等变Transformer、Transformer、图神经网络和TensorNet等多种架构,可通过conda-forge安装或从源代码构建。TorchMD-NET具有灵活的训练配置选项,支持自定义数据集和多节点训练,并提供预训练模型。
ASE_ANI - 神经网络势能模型为原子模拟提供高效准确预测
ANIGithub分子动力学开源项目机器学习神经网络势能量子化学
ASE-ANI是一个开源的神经网络势能模型接口,为原子模拟环境(ASE)设计。它集成了ANI-1x和ANI-1ccx模型,可对CHNO元素进行高精度预测。该项目运用深度学习技术,实现了DFT级别的精度和显著降低的计算成本。ASE-ANI支持CUDA加速,适用于配备NVIDIA GPU的Ubuntu系统,为分子动力学模拟等应用提供高效解决方案。
deepchem - 深度学习在药物发现、材料科学中的开源工具链
DeepChemGithub开源项目材料科学深度学习药物发现量子化学
DeepChem是一个高质量的开源工具链,致力于推动深度学习在药物发现、材料科学、量子化学和生物学中的应用。支持Python 3.7至3.10,兼容TensorFlow、PyTorch、JAX等框架。用户可通过pip或conda安装,或使用Docker镜像。项目包含丰富的教程和实例,适合从新手到专家。社区活跃,提供Discord和讨论论坛,欢迎科学家、开发者和爱好者的参与。
dlpack - 促进深度学习框架间张量共享与协作
DLPackGithub内存共享开源项目张量结构深度学习框架
DLPack是一种开放的内存张量结构,用于深度学习框架间的张量共享。它简化了框架间的运算符共享,便于封装供应商级运算符实现,支持快速切换后端实现。作为跨框架复用的桥梁,DLPack不直接实现张量和操作,而是促进深度学习生态系统的协作,为用户提供更多运算符选择和框架混合使用的可能性。
spack - 灵活高效的多平台软件包管理器 支持HPC环境
GithubSpack包管理器多版本开源项目软件安装
作为一个多平台软件包管理工具,Spack在Linux、macOS、Windows和众多超级计算机上表现出色。它能同时管理多个软件版本和配置,安装过程不会影响现有环境。通过简洁的'spec'语法,用户可轻松指定所需版本和配置。Spack的包文件采用Python编写,使开发者能够用单一脚本实现软件包的多种构建方式,大大提高了效率。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
tensorpack - 高效的神经网络训练接口,支持多GPU和分布式训练
GithubTensorpack可重复性研究开源项目数据加载性能训练速度高质量实现
Tensorpack是基于TensorFlow的神经网络训练接口,专注于提升训练速度与性能。其高效的数据加载和并行化策略显著提高了训练速度,尤其是在CNN上的表现比Keras代码快1.2到5倍。Tensorpack适合需要可重复和灵活研究的开发者,支持多GPU和分布式训练,并提供多个著名论文的高质量复现案例。Tensorpack并不是一个模型包装器,用户可以灵活使用TensorFlow及其他高层API。
octopack - 代码大语言模型指令微调与评估工具集
CommitPackGithubHumanEvalPackOctoPack代码大语言模型开源项目指令微调
OctoPack是一个开源的代码大语言模型指令微调与评估工具集。它包含CommitPack数据集、OctoCoder和OctoGeeX模型、HumanEvalPack评估基准等关键组件。该项目提供数据处理、模型训练和评估的完整流程,助力研究人员开发和优化代码大语言模型。OctoPack的所有组件均可自由使用,为代码AI研究提供了宝贵资源。
GPUMD - GPU加速的分子动力学模拟和机器学习势能开发工具
GPUMDGPU加速GithubNEP分子动力学开源项目机器学习势能
GPUMD是一款在GPU上实现的高效分子动力学模拟工具。它支持神经进化势能(NEP)的训练和使用,提供热传导计算、光谱分解等功能。该工具性能高效,易于使用,适用于Linux和Windows系统。GPUMD提供丰富的教程、文档和相关Python包,便于进行大规模原子模拟和数据分析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号