Project Icon

rag-using-langchain-amazon-bedrock-and-opensearch

基于Amazon Bedrock和OpenSearch构建检索增强生成系统

这个开源项目展示了如何使用Amazon Bedrock的Titan模型和OpenSearch的向量引擎来构建检索增强生成(RAG)系统。项目利用LangChain框架将嵌入文本存储在OpenSearch中,为语言模型提供更精准的上下文。开发者可以选择Amazon Bedrock提供的多种基础模型,包括Anthropic Claude和AI21 Labs的Jurassic系列。项目文档详细介绍了从OpenSearch集群部署到数据加载和查询的全过程,为有意实践RAG技术的开发者提供了完整的参考。

rag-search - 智能数据检索和排名优化工具
API 请求FastAPIGithubRAG Search APIthinkany.ai开源项目机器学习模型
RAG Search API是由thinkany.ai开发,旨在优化搜索结果的效率与准确性。这一API实现了多样化的搜索功能,包括信息重排、筛选详细数据等,并能通过FastAPI快速部署。其简便的安装过程使得开发者能够轻松集成此技术,从而提升数据处理的效能。
CRUD_RAG - 全面评估中文检索增强生成系统的基准测试
CRUD-RAGGithub中文基准测试大语言模型开源项目检索增强生成评估系统
CRUD_RAG是一个全面的中文检索增强生成(RAG)系统评估基准。该项目包含36166个测试样本,覆盖CRUD操作,支持多种评估指标。CRUD_RAG提供原生中文数据集、评估任务和基线模型,并具备一键式评估功能。这一工具可助力研究人员和开发者全面评估和优化中文RAG系统性能,推动中文自然语言处理技术的进步。
rag-sequence-nq - RAG序列模型:知识密集型NLP任务的检索增强生成方案
GithubHuggingfaceRAGfacebook开源项目检索增强生成模型自然语言处理问答系统
RAG-Sequence模型是基于《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》论文研发的开源项目。该模型集成了问题编码器、检索器和生成器,可从wiki_dpr数据集提取相关段落并生成答案。经过wiki_dpr问答数据集的端到端微调,这个不区分大小写的模型能够处理各类事实性问题。开发者可通过Hugging Face的transformers库轻松应用此模型,为知识密集型NLP任务提供高效解决方案。
ragflow - 基于深度文档理解的高效RAG工作流引擎
GithubLLMRAGFlow兼容异构数据源开源项目深度文档理解自动化RAG工作流程
RAGFlow是一个基于深度文档理解的开源RAG引擎,适用于各种规模的企业。结合大型语言模型,它提供可靠的问答功能和可信的引用。RAGFlow支持多种数据格式,包括文本、图片和音频文件,并且兼容本地和远程LLM,提供自动化、无缝集成的RAG工作流,便于通过直观的API进行业务整合。
beyondllm - RAG系统开发与部署的一站式工具包
AI教育BeyondLLMGithubRAG系统大语言模型开源项目
BeyondLLM是一个面向检索增强生成(RAG)系统的综合开发工具包。它集成了自动化流程、可定制评估指标和多种大型语言模型支持,简化RAG系统的实验、评估和部署过程。该工具有助于减少LLM幻觉,提升系统可靠性,支持RAG应用的快速迭代和监控。BeyondLLM兼容Python 3.8-3.11版本,为开发者提供简洁高效的API接口。
local-rag-example - 结合Langchain和Streamlit技术构建本地化聊天式PDF应用
ChatPDFGithubLangchainOllamaRAGStreamlit开源项目
优化描述,以如何在本地机器上快速建立和运行ChatPDF为核心,突出其隐私保护和成本效益的特点。进一步细化技术栈的用途,即Langchain、Ollama和Streamlit如何具体提升操作效率和用户界面体验。
bedrock-claude-chat - 使用Anthropic Claude模型和Amazon Bedrock构建智能聊天机器人
AWSAmazon BedrockAnthropicBedrock Claude ChatGithubLLM开源项目
本项目示例介绍了如何使用Anthropic公司提供的Claude模型和Amazon Bedrock的生成式AI来构建智能聊天机器人。该项目支持多种语言和个性化设置,并可通过API发布。提供详细的管理员仪表板、自动任务处理,以及简易的部署流程。项目架构基于AWS管理服务,确保应用程序的可扩展性、可靠性和安全性。
BCEmbedding - 双语跨语言嵌入模型提升检索增强生成效果
BCEmbeddingGithubRAG双语开源项目语义表示跨语言
BCEmbedding是一款双语和跨语言嵌入模型,针对检索增强生成(RAG)任务进行优化。该模型包含EmbeddingModel和RerankerModel两个组件,分别用于语义向量生成和搜索结果优化。BCEmbedding在中英文语义表示和RAG评估中展现出优异性能,支持多语言和多领域应用。该项目提供了便捷的API接口,可直接集成到RAG系统中,已在实际产品中得到应用验证。
finetune-embedding - 利用合成数据微调嵌入模型提升RAG检索效果
GithubLlamaIndexRAG合成数据嵌入模型微调开源项目检索性能
finetune-embedding项目展示了利用合成数据微调嵌入模型来提升RAG性能的方法。该项目详细介绍了使用大语言模型生成合成数据集、微调开源嵌入模型和评估模型效果的步骤。在小规模金融PDF文档数据集上的实验证明,微调后的嵌入模型能显著提高检索性能。这种方法通过大语言模型生成假设性问题,无需人工标注即可创建高质量训练数据,为RAG系统优化提供了新思路。
rags - 使用自然语言从数据源创建RAG管道
GithubOpenAIRAGsStreamlit开源项目数据管道自然语言处理
RAGs是一个基于Streamlit的应用程序,使用自然语言从数据源创建RAG管道。用户可以描述任务和参数,查看和修改生成的参数,并通过RAG代理查询数据。项目支持多种LLM和嵌入模型,默认使用OpenAI构建代理。该应用程序提供了一个标准的聊天界面,能够通过Top-K向量搜索或总结功能满足查询需求。了解更多关于安装和配置的信息,请访问GitHub页面或加入Discord社区。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号