Project Icon

Phi-3.1-mini-128k-instruct-GGUF

量化指导优化内存资源使用

项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。

Phi-3.1-mini-4k-instruct-GGUF - Phi-3.1-mini-4k-instruct量化技术在文本生成中的应用
GithubHuggingfaceNLPPhi-3.1-mini-4k-instruct开源项目数据集文件下载模型量化
该项目通过llama.cpp进行模型量化,提供多种量化文件选项,涵盖从高质量到适合低内存设备的多种场景。项目详细介绍了如何选择量化文件,并提供了在不同硬件环境下的最佳实践,对于有技术需求的用户,项目提供了功能特性对比分析,帮助理解量化与优化策略。
Phi-3-medium-128k-instruct-GGUF - Phi-3-medium-128k-instruct模型的多硬件平台适配与量化选项
GithubHuggingfacePhi-3-medium-128k-instructllama.cpp开源项目模型模型下载自然语言处理量化
Phi-3-medium-128k-instruct项目以llama.cpp最新版本为基础,提供多种量化模型以适应不同内存与性能需求,支持包括Nvidia的cuBLAS、AMD的rocBLAS、CPU及Apple Metal在内的多种硬件平台。推荐使用Q6_K_L和Q5_K_M版本以实现高精度场景需求。用户可利用huggingface-cli选择性下载所需模型,以达到速度与质量的最佳平衡。
Phi-3.5-mini-instruct-GGUF - 高性能微软小型语言模型的量化方案
ARM芯片GGUFGithubHuggingfacePhi-3.5-mini-instruct开源项目模型模型权重量化
该项目基于llama.cpp框架,对Microsoft Phi-3.5-mini-instruct模型进行GGUF格式量化,提供从Q2到Q8等多个精度版本。每个量化版本都针对不同硬件平台进行了优化,包括针对ARM芯片的特殊优化版本。项目提供完整的模型特性对比和选择指南,帮助开发者根据实际需求选择合适的量化版本。
Phi-3-mini-4k-instruct - 高效节省内存的模型微调策略,快速实现量化优化
GithubHuggingfacePhi-3免费微调内存优化开源项目机器学习模型量化模型
此项目通过Unsloth量化技术,提供高效的Mistral平台大模型微调方案,速度提升至2-5倍,内存占用降低至50-70%。提供的Colab笔记本支持Phi-3、Llama 3、Gemma 2等多种模型,简单易用,适合初学者。用户可以节省计算资源,并将微调后的模型导出至GGUF或上传至Hugging Face,方便成果共享。
Phi-3.5-mini-instruct_Uncensored-GGUF - 优化的量化模型提供多种压缩方案支持不同运行环境
GGUFGithubHuggingfaceLLMPhi-3.5llama.cpp开源项目模型量化
该项目基于llama.cpp框架,将Phi-3.5-mini-instruct模型转换为GGUF格式,提供从F16到IQ2_M共19种量化版本。模型文件大小范围在1.32GB至7.64GB之间,适配CPU和GPU环境。Q6_K、Q5_K系列及IQ4_XS等版本在性能与体积上表现均衡,可根据硬件配置选择适合的版本使用。
llama-3-cat-8b-instruct-v1-GGUF - 文本生成模型的量化选择
GithubHuggingfacellama.cpp开源项目文件下载模型模型性能质量选择量化
此项目通过llama.cpp进行模型量化,以满足多样化的硬件限制需求。量化文件选择从Q8_0到IQ1_S不等,推荐使用Q6_K和Q5_K_M文件。使用huggingface-cli可方便下载所需文件。I-quant和K-quant适应不同硬件,特别在低于Q4时,I-quant表现出色。支持CPU和Apple Metal,需注意性能平衡。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
Hermes-2-Theta-Llama-3-8B-GGUF - Hermes-2-Theta量化文件的选择与使用指南
GithubHermes-2-Theta-Llama-3-8BHuggingfaceI-quantsK-quants开源项目模型模型大小量化
Hermes-2-Theta-Llama-3-8B项目使用llama.cpp技术产生多种量化文件,适合多种硬件架构和性能需求。用户可依据设备的RAM和VRAM选择恰当的量化文件。项目提供Q和I两种量化格式,涵盖从低到高的质量选项,并可通过huggingface-cli轻松下载。项目还包括性能表现图表及功能矩阵,为用户优化模型提供指南。
Llama-3SOME-8B-v2-GGUF - Llama-3SOME-8B-v2量化模型下载和选择的实用指南
GithubHuggingfaceLlama-3SOME-8B-v2内存需求开源项目模型模型下载量化高品质
该项目通过llama.cpp的imatrix选项实现了Llama-3SOME-8B-v2模型的多种量化版本下载,以适应不同的内存需求。根据系统RAM和GPU的VRAM,用户可以选择最佳量化格式来在性能和质量之间取得平衡。建议使用K量化格式,如Q5_K_M,或在某些情况下选择性能优异的I量化格式,如IQ3_M。项目提供了从低RAM需求到最高质量的多种选择,用户可以根据需求进行灵活选择。
Qwen2.5-Coder-7B-Instruct-GGUF - 深度学习模型的多规格量化版本适配不同硬件和性能要求
GGUFGithubHuggingfaceQwen2.5-Coder-7B-Instructllama.cpp大语言模型开源项目模型量化
本项目为Qwen2.5-Coder-7B-Instruct模型提供了从15GB到2.78GB的多种量化版本。采用llama.cpp最新技术,包括K-quants和I-quants两种量化方案,并针对ARM架构优化。用户可根据设备内存容量和性能需求选择适合版本。各版本保留原始模型核心功能,适用于多种部署场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号