Project Icon

Phi-3.1-mini-128k-instruct-GGUF

量化指导优化内存资源使用

项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。

c4ai-command-r-08-2024-GGUF - c4ai-command-r-08-2024模型的量化方法解析
CohereGithubHugging FaceHuggingfaceLlamacpp开源项目模型模型下载量化
该项目利用llama.cpp工具对c4ai-command-r-08-2024模型进行量化,提供多种文件选择以满足不同计算需求。用户可参考下载和使用指南,根据GPU和RAM容量选择合适的量化格式,以优化性能。项目还提供性能图表和I-quant与K-quant选择建议,旨在帮助用户进行有效配置。这些量化文件适合在LM Studio中运行,强调高效推理和广泛适用性。
Replete-LLM-V2.5-Qwen-14b-GGUF - Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述
ARM芯片GithubHuggingfaceRombos-LLM-V2.5-Qwen-14b开源项目性能比较模型模型优化量化
该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。
Llama-3.2-3B-Instruct-GGUF - Llama 3.2多语言模型的高效量化部署方案
GithubHuggingfaceLlama 3.2多语言开源项目机器学习模型语言模型量化模型
Llama 3.2系列多语言模型的GGUF量化版本,针对对话、检索和摘要任务进行优化。通过多种量化方案实现4.66GB至9.38GB的灵活内存占用,适合在资源受限环境部署。该模型在主流行业基准测试中展现了良好性能。
Ministral-8B-Instruct-2410-GGUF - 多语言开源大模型的精简量化版本
GithubHuggingfaceMistralllama.cpp大型语言模型开源项目推理模型量化
本项目提供Mistral AI的Ministral-8B-Instruct-2410模型的多种量化版本。使用llama.cpp进行量化,包含从16GB的F16全精度版本到4.45GB的IQ4_XS版本,适合不同硬件和性能需求。量化模型采用imatrix选项和特定数据集生成,可在LM Studio运行。项目详细介绍了各版本的文件大小、特点及模型提示格式,方便用户选择合适的版本。
Mistral-7B-Instruct-v0.3-GGUF - Mistral-7B-Instruct模型的多种量化版本优化性能与文件大小
GGUFGithubHuggingfaceMistral-7B-Instruct-v0.3llama.cpp开源项目模型模型性能量化
该项目为Mistral-7B-Instruct-v0.3模型提供多种量化版本,采用llama.cpp的imatrix选项。量化类型从Q8_0到IQ1_S不等,文件大小范围为1.61GB至7.70GB。项目详细介绍了各版本特点,并提供下载指南和选择建议,方便用户根据硬件条件和性能需求选择最佳版本。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
glm-4-9b-chat-1m-GGUF - 基于GLM-4的轻量级中文对话模型量化版本
GGUFGLM-4GPU优化GithubHuggingface大语言模型开源项目模型模型量化
该项目基于GLM-4-9b-chat-1m模型开发,通过llama.cpp实现多种精度的模型量化。从18GB的F16版本到4GB的IQ2版本,提供了丰富的量化选项。项目中包含详细的性能对比和部署建议,方便开发者根据硬件条件选择合适的量化版本进行本地化部署。
Qwen2.5-3B-Instruct-GGUF - Qwen2.5-3B-Instruct重启量化技术提升多设备文本生成表现
GithubHuggingfaceQwen2.5-3B-Instruct嵌入输出权重开源项目文件大小模型模型下载量化
本项目通过使用llama.cpp进行量化优化,使文本生成模型在各类设备上运行更为高效,其在ARM芯片上的性能尤为突出,同时提供多种量化类型以满足不同内存和计算需求。更新的tokenizer进一步提升了文本生成质量。项目提供多种K-quant和I-quant选项以满足特定环境需求,并深入对比不同量化格式的性能差异。为研究人员和开发者提供丰富下载资源和技术支持,助力大规模语言模型的高效实现。
Meta-Llama-3-8B-Instruct-quantized.w8a16 - 智能LLM量化技术实现50%体积压缩并完整保留性能
GithubHuggingfaceMeta-Llama-3OpenLLM人工智能开源项目权重优化模型模型量化
Meta-Llama-3-8B-Instruct模型经INT8量化优化后,参数位数从16位降至8位,减少约50%磁盘空间和GPU内存占用。在OpenLLM基准测试中,量化模型平均得分68.69,与原版68.54分相当。模型支持vLLM和transformers框架部署,适用于英语环境中商业和研究领域的AI助手应用。
Qwen2.5-7B-Instruct-GGUF - Qwen2.5-7B-Instruct的多样化量化方案增强模型适应性
ARM芯片GithubHuggingfaceQwen2.5-7B-Instruct开源项目性能优化模型训练数据集量化
项目采用llama.cpp的最新量化方案对Qwen2.5-7B-Instruct模型进行优化,提供灵活的量化格式以匹配各类硬件环境。更新的上下文长度管理与先进的分词器,无论选择传统的Q-K量化还是新兴的I-quant,各种档次的文件都能帮助设备实现性能与速度的平衡。尤其是对ARM架构的专门优化,即便在低RAM环境下,用户也能凭借有限的资源获得可行的使用体验。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号