Project Icon

bert-base-uncased-emotion

情感数据集的高效文本分类模型

bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。

BertWithPretrained - 基于PyTorch实现的BERT模型及相关下游任务
BERTGithubPyTorchTransformer中文文本分类开源项目英文文本分类
该项目基于PyTorch实现了BERT模型及其相关下游任务,详细解释了BERT模型和每个任务的原理。项目支持分类、翻译、成对句子分类、多项选择、问答和命名实体识别等任务,涵盖中文和英语的自然语言处理。此外,项目还含有丰富的数据集和预训练模型配置文件。
bert-base-multilingual-cased - BERT多语言预训练模型覆盖104种语言
BERTGithubHuggingface多语言模型开源项目模型深度学习自然语言处理预训练
bert-base-multilingual-cased是基于104种语言Wikipedia数据预训练的BERT模型。通过掩码语言建模和下一句预测实现自监督学习,可用于微调多种NLP任务。该模型支持多语言处理,适用于序列分类、标记分类和问答等应用,为NLP研究和开发提供了强大的多语言基础。
bert-base-vietnamese-uncased - 增强越南语文本分析的BERT语言模型
BERTGithubHuggingfacetrituenhantao.io开源项目模型筛选分类越南语
该BERT模型专为越南语的新闻和维基百科数据而设计,适用于序列分类任务。用户可以通过Python代码轻松导入和使用,提升文本分析和自然语言处理的效率。由trituenhantao.io团队于2020年发布在GitHub,用户可以轻松访问到详细的文档和支持。此模型为自然语言处理和机器学习研究者及开发者提供了强大可靠的工具。
KR-FinBert-SC - 金融情感语义分析的最新进展
GithubHuggingfaceKR-FinBert开源项目情感分析模型自然语言处理迁移学习金融领域
KR-FinBert-SC利用金融语料库进行预训练和微调,以提高NLP中的情感分析性能。该模型训练涉及韩国维基百科、新闻文章和法律文本等,扩展数据集超过12GB,并添加了经济新闻和证券分析报告以支持迁移学习。在50,000条标记数据中,该模型的情感分类准确率达到96.3%。
bert-base-chinese - BERT预训练模型在中文自然语言处理中的应用
BERTGithubHuggingface中文模型开源项目掩码语言模型模型自然语言处理预训练
bert-base-chinese是一个专为中文自然语言处理设计的预训练BERT模型。该模型采用独立字词片段随机掩码训练方法,适用于掩码语言建模等任务。由HuggingFace团队开发,拥有12层隐藏层和21128词汇量。虽然可能存在潜在偏见,但为中文NLP应用提供了有力支持。研究人员可通过简洁的Python代码快速应用此模型。
twitter-roberta-large-hate-latest - 增强的多类别仇恨言论检测模型
GithubHuggingfaceRoBERTaSuperTweetEval仇恨言论检测开源项目推特文本分类模型
此RoBERTa-large模型基于154M推文数据进行训练,并在SuperTweetEval数据集上进行微调,以实现仇恨言论的多类别分类检测。模型能够准确识别多种仇恨类型,包括性别、种族和宗教等,为社交媒体内容管理提供支持。
vit-face-expression - Vision Transformer驱动的七类面部表情识别模型
FER2013GithubHuggingfaceVision Transformer人脸表情识别开源项目情感分析数据预处理模型
vit-face-expression模型采用Vision Transformer架构,通过FER2013数据集微调,实现了七种基本面部表情的识别。该模型可分析愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性表情,在测试集上达到71.16%的准确率。这一开源项目为面部情绪分析领域提供了新的解决方案。
quote-model-BERTm-v1 - BERT多语言模型在引用识别任务上的高性能微调应用
BERTGithubHuggingface多语言模型开源项目文本分类机器学习模型自然语言处理
quote-model-BERTm-v1是一个基于BERT多语言模型微调的引用识别工具。该模型在评估集上表现优异,准确率达93.14%,F1分数为0.8676。通过Adam优化器和线性学习率调度器,经过3轮训练而成。这一模型专门用于多语言环境下的高精度引用识别,可广泛应用于需要处理多语种文本引用的场景。
bge-base-en-v1.5 - 增强文本处理能力的多任务学习模型
GithubHuggingfacesentence-transformers分类句子相似性句子聚类开源项目模型特征提取
bge-base-en-v1.5模型通过多任务学习优化自然语言处理技术,覆盖分类、检索、聚类和重排任务。在多个MTEB数据集上表现优异,例如在亚马逊情感分类任务中达到93.39%的准确率,在AskUbuntu重排任务中MRR达到74.28%。该模型具有MIT开源许可,适用于多种英语任务,为研究人员和开发者提供有效支持。
classifier-multi-label - 基于BERT的多标签文本分类算法实现
BERTGithubSeq2SeqTextCNNtf.nn.softmax_cross_entropy_with_logits多标签分类开源项目
本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号