Project Icon

twitter-roberta-base-offensive

基于roBERTa的推特攻击性语言识别模型

这是一个基于roBERTa-base的模型,通过5800万条推文训练并使用TweetEval基准进行微调,专门用于识别攻击性语言。该模型能对文本进行预处理和分类,区分攻击性和非攻击性内容。它采用了自然语言处理技术,可作为社交媒体平台的内容审核工具。模型支持Python环境下的使用,能够输出文本的攻击性概率评分。

roberta-large - 大型英语预训练模型,适合多种任务优化
GithubHuggingfaceRoBERTaTransformer模型开源项目模型语言模型遮蔽语言建模预训练模型
RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。
roberta-base-zeroshot-v2.0-c - 商用优化的零样本文本分类工具
GithubHugging FaceHuggingfacezeroshot分类商业友好数据开源项目模型模型训练自然语言推理
该系列模型专为Hugging Face平台优化,支持在GPU和CPU上进行零样本分类,无需预先训练数据。最近的改进包括基于商业友好的数据集训练,能满足严苛的许可条件。roberta和deberta系列以合理的准确性和速度满足不同需求,可用于多种语言和大范围文本输入,非常适合全球多样化的应用场景。最新的模型更新可在Zeroshot Classifier Collection中查阅,确保多种使用环境下的合规性。
toxic-comment-model - 使用DistilBERT进行在线毒性评论分类的模型与偏见分析
DistilBERTGithubHuggingface偏差培训数据开源项目模型毒性评论
该模型基于DistilBERT进行精调,专为在线毒性评论分类设计。尽管总体表现出色,但在识别某些身份群体时表现出偏见,如穆斯林和犹太人。通过示例代码能快速应用此模型,其在10000条测试数据中取得94%的准确率,但f1-score为0.59。更多信息及训练代码可在指定GitHub仓库获取。
bias_identificaiton45 - 基于RoBERTa的10类偏见识别模型
GithubHuggingfacePriyaPatel/Bias_identificationRoBERTa偏见识别开源项目文本分类机器学习模型
该偏见识别模型基于RoBERTa架构,通过微调实现对10种偏见类型的分类。涵盖范围包括种族、性别、年龄等多个维度,在测试集上准确率达98.32%。模型可应用于自然语言处理研究,特别是偏见分析领域。支持通过Hugging Face transformers库快速部署使用。
bert-base-uncased-ag-news - 基于BERT的文本序列分类模型
GithubHuggingfaceTextAttackag_news数据集bert-base-uncased序列分类开源项目模型精度
bert-base-uncased模型通过TextAttack和ag_news数据集进行微调,专为文本序列分类任务优化。经过5轮训练并采用交叉熵损失函数,该模型在第3轮时达到了0.951的高准确率。该模型设置批量大小为16,学习率为3e-05,最大序列长度为128,适用于高效准确的文本分类任务。了解更多信息请访问TextAttack的Github页面。
TextAttack - 为NLP模型生成对抗样本和进行数据增强的专业工具
GithubNLPTextAttack对抗样本开源项目数据增强模型训练
TextAttack是一个专为自然语言处理(NLP)提供对抗攻击、数据增强和模型训练的Python框架。通过多种预定义攻击策略,用户可以更好地理解和研究NLP模型。TextAttack支持简便的命令行操作和广泛的模型与数据集,提供详细的文档和示例代码,帮助提高模型的泛化能力和鲁棒性。
detoxify - 基于Pytorch Lightning和Transformers的多语言有害评论分类模型
DetoxifyGithubJigsawMultilingualPytorch LightningToxic Comment ClassificationTransformersUnintended Bias in Toxicity Classification开源项目
Detoxify项目利用Pytorch Lightning和Transformers构建模型,识别和分类包含威胁、辱骂和身份攻击的有害评论。这些模型支持多语言操作,致力于减少无意中的偏见。项目在多次Jigsaw挑战赛中表现出色,提供高效的有害内容检测方案,适合用于研究和内容审核工作,帮助更快速地标记有害内容和提高用户体验。
pretraining-with-human-feedback - 基于人类偏好预训练的语言模型代码库
GithubHugging Facetoxicity人类偏好多任务开源项目预训练
该项目为根据人类偏好预训练语言模型提供了一套基于Hugging Face Transformers和wandb的工具。项目实现了五种预训练目标,通过对训练数据注释并使用这些目标函数提升模型性能,包括毒性检测和隐私信息识别等任务。项目还提供详细的配置文件和评估方式指导。
llm-attacks - 研究大语言模型的对抗性攻击与安全防御
GCG算法GithubLLM攻击实验复现对抗性攻击开源项目语言模型
LLM-attacks项目致力于研究对齐语言模型的通用和可迁移对抗性攻击。项目实现了GCG算法,可对LLaMA-2等模型进行安全测试。研究者能够复现论文中的单一行为、多行为和迁移实验。项目提供完整的安装指南、模型使用说明和实验脚本,并包含交互式演示notebook。该研究有助于深入理解和提升大语言模型的安全性,对相关领域的发展具有重要价值。
sentiment-analysis - 多种中文情感分析方法及实现途径
GithubSentiment Analysis开源项目情感分析文本分类深度学习自然语言处理
该页面介绍了中文情感分析的三种类型:基于情感词典、传统机器学习和深度学习的方法,并展示了四种实现方式:词典法、Bayes法、ALBERT与TextCNN结合及其emoji扩展。适合自然语言处理和文本分类爱好者深入了解情感分析的实现手段。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号