Project Icon

bcms-bertic-ner

BERTić微调模型实现BCMS语言的高效命名实体识别

bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。

tner-xlm-roberta-base-ontonotes5 - XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注
GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目标记分类模型深度学习自然语言处理
该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。
bert-base-arabic-camelbert-mix-ner - 基于CAMeLBERT Mix的阿拉伯语命名实体识别模型
CAMeLBERT-MixGithubHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语预训练模型
这是一个基于CAMeLBERT Mix模型微调的阿拉伯语命名实体识别模型。该模型使用ANERcorp数据集进行训练,能够识别阿拉伯语文本中的地点等命名实体。用户可通过CAMeL Tools或Transformers pipeline轻松调用。模型在多项自然语言处理任务中表现优异,尤其适合处理现代标准阿拉伯语文本。
indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
nbailab-base-ner-scandi - 斯堪的纳维亚语言的命名实体识别模型
GithubHuggingfaceScandiNER北欧语言命名实体识别开源项目数据集模型模型性能
这个模型是NbAiLab/nb-bert-base的精调版本,适用于丹麦语、挪威语、瑞典语、冰岛语和法罗语的命名实体识别(NER)。通过整合DaNE、NorNE、SUC 3.0和WikiANN的一些数据集,模型可以提供高精度的NER结果,并支持多种语言包括英语。识别的实体类型包括人名、地名、组织名及其他类别。模型以Micro-F1得分约为89%的表现,以及4.16样本/秒的处理速度表现出色,同时模型体积合理,带来好的准确性和效率平衡。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
bert-base-arabic-camelbert-msa-ner - 现代标准阿拉伯语命名实体识别增强
CAMeLBERTCamel工具GithubHuggingface命名实体识别开源项目模型阿拉伯语模型预训练语言模型
项目基于CAMeLBERT模型提升现代标准阿拉伯语的命名实体识别性能,使用ANERcorp数据集进行微调以提高精度。可通过CAMeL Tools组件或transformers管道实现多用例应用。
distilbert-base-cased-finetuned-conll03-english - 基于DistilBERT的英语命名实体识别模型
CoNLL-2003DistilBERTGithubHuggingface命名实体识别开源项目模型自然语言处理迁移学习
这是一个基于distilbert-base-cased模型微调的英语命名实体识别(NER)工具。该模型在conll2003英语数据集上训练,对大小写敏感,在验证集上达到98.7%的F1分数。它能够有效识别和分类文本中的人名、地名和组织名等命名实体,为各种自然语言处理任务提供支持。
bert-base-uncased-conll2003 - 基于BERT的CoNLL-2003数据集命名实体识别模型
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目模型模型微调自然语言处理
此模型是基于bert-base-uncased在CoNLL-2003数据集上微调的命名实体识别模型。经过2轮训练,模型在测试集上展现出优秀性能:精确率达0.8885,召回率为0.9046,F1分数为0.8965,准确率高达0.9781。模型采用Adam优化器和线性学习率调度器,为NLP领域提供了一个高效的命名实体识别解决方案。
robertuito-ner - 基于RoBERTuito的双语命名实体识别模型
GithubHuggingfaceLinCERoBERTuito命名实体识别开源项目机器学习模型模型自然语言处理
robertuito-ner是一个基于RoBERTuito的命名实体识别模型,用于处理西班牙语和英语混合文本。该模型在LinCE NER语料库训练,支持识别人名、地名等实体,在NER任务上达到68.5%的性能指标。通过pysentimiento库集成,可用于社交媒体文本分析和代码切换研究。
ChineseNER - 多模型支持的中文命名实体识别开源项目
Github中文NER命名实体识别多任务学习开源项目深度学习模型词汇增强
这是一个开源的中文命名实体识别项目,集成了多种深度学习模型。从BiLSTM-CRF到BERT-BiLSTM-CRF,再到多任务学习模型,涵盖了NER领域的主流算法。项目特色包括词汇增强、数据增强和MRC框架等创新功能。同时提供了完整的训练、评估流程和Docker部署方案,便于研究者和开发者使用。项目集成了从BiLSTM-CRF到BERT系列的多种NER模型,并创新性地引入词汇增强、数据增强和MRC框架等技术。不仅提供了详细的模型训练和评估指南,还支持Docker部署,方便研究人员和工程师快速应用到实际场景中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号