Project Icon

GNN-RAG

结合图神经网络和检索增强生成的知识图谱问答方法

GNN-RAG项目探索了图神经网络在大语言模型推理中的应用。该方法在密集子图上进行推理,检索候选答案和推理路径,结合了GNN的结构化推理和LLM的自然语言处理能力。项目提供了GNN实现和基于RAG的LLM问答系统的代码,以及实验结果。研究表明,这种方法在知识图谱问答任务中具有提升性能的潜力。

ToG - 结合知识图谱的大语言模型深度推理框架
GithubICLRToG大语言模型开源项目深度推理知识图谱
ToG项目提出了一种结合知识图谱的大语言模型推理框架,旨在实现更深入、更负责任的推理能力。该框架在复杂问答和知识推理任务中展现了良好性能,有助于提升AI系统的可解释性和准确性。项目开源代码支持Freebase和Wikidata知识图谱,为相关研究提供了实验平台。
Autogen_GraphRAG_Ollama - 实现本地多智能体RAG系统的开源项目
AutoGenChainlitGithubGraphRAGOllama开源项目本地LLM
Autogen_GraphRAG_Ollama是一个将GraphRAG与AutoGen代理结合的开源项目。它利用Ollama的本地LLM实现免费离线嵌入和推理,通过函数调用整合GraphRAG的知识搜索方法。项目支持本地模型推理和嵌入,扩展了AutoGen以支持非OpenAI LLM的函数调用,并集成Chainlit UI处理持续对话和用户交互,打造了一个功能完备的本地化多智能体RAG系统。
graphrag-local-ollama - 基于Ollama的本地知识图谱RAG工具
GithubGraphRAGOllama开源项目本地模型知识图谱贡献指南
GraphRAG Local Ollama是基于Microsoft GraphRAG的改编项目,支持使用Ollama下载的本地模型。该项目通过构建图形化文本索引,利用本地语言模型和嵌入模型回答全局性问题,适用于大规模文本语料库。相比OpenAPI模型,它具有高效、低成本的本地推理优势,同时提供简便的设置流程。这一工具特别适合需要处理私有数据或大量文本的用户。
GraphRAG-Local-UI - 将本地知识图谱与大语言模型无缝集成的开源工具
APIGithubGraphRAG可视化开源项目本地模型知识图谱
GraphRAG-Local-UI是一个开源的知识图谱构建和查询工具,支持本地部署大语言模型和嵌入模型。该项目提供直观的界面用于数据索引、提示词调优和信息查询,并具备实时知识图谱可视化功能。它适用于需要构建和探索复杂知识网络的研究人员和开发者,无需依赖云服务即可实现高效的知识管理和信息检索。
self-rag - 通过自反学习使语言模型实现按需检索、生成和评估的框架
GithubSelf-RAG关键词生成开源项目检索增强生成自我反思语言模型
Self-RAG是一种创新框架,通过自反学习使语言模型实现按需检索、生成和评估。该方法预测反思标记,支持多次检索或跳过检索,并从多角度评估生成内容。这不仅提高了模型输出的事实性和质量,还保持了语言模型的通用性能。
RAG-Retrieval - 使用RAG-Retrieval全面提升信息检索效率与精度
GithubRAG-Retrieval开源项目微调排序模型推理检索模型
RAG-Retrieval项目通过统一方式调用不同RAG排序模型,支持全链路微调与推理。其轻量级Python库扩展性强,适应多种应用场景,提升排序效率。更新内容包括基于LLM监督的微调及其Embedding模型的MRL loss性能提升。
fastRAG - 检索增强生成模型的构建与应用探索
ColBERTGithubHaystackLLMONNX RuntimefastRAG开源项目
fastRAG是一个专为构建和优化检索增强生成模型的研究框架,集成了最先进的LLM和信息检索技术。它为研究人员和开发人员提供了一整套工具,支持在Intel硬件上进行优化,并兼容Haystack自定义组件。其主要特点包括对多模态和聊天演示的支持、优化的嵌入模型和索引修改功能,以及与Haystack v2+的兼容性。
MultiHop-RAG - 评估跨文档RAG能力的多跳查询数据集
GithubMultiHop-RAG元数据开源项目检索增强生成跨文档评估问答数据集
MultiHop-RAG是一个评估检索增强生成(RAG)系统跨文档能力的问答数据集。它包含2556个多跳查询,每个查询的证据分布在2至4个文档中,并考虑文档元数据,模拟真实RAG应用中的复杂场景。该项目提供检索和问答示例以及评估脚本,帮助研究人员和开发者改进RAG系统的多文档推理能力。
RAGFoundry - 开源框架增强大语言模型检索能力
GithubRAG Foundry大语言模型开源项目数据集创建检索增强生成模型微调
RAG Foundry是一个开源框架,通过RAG增强数据集微调模型来提升大语言模型的外部信息检索能力。该框架包含数据集创建、模型训练、推理和评估四个模块,支持快速原型设计和RAG实验。其模块化设计和可定制工作流程,有助于研究人员和开发者高效改进LLM的检索增强生成能力。
rag-fusion - 多重查询生成与排名融合的新型搜索技术
GithubRAG-Fusion向量搜索开源项目搜索技术查询生成重排算法
RAG-Fusion是一种创新搜索方法,旨在弥合传统搜索与复杂人类查询间的差距。它结合检索增强生成(RAG)技术,通过多重查询生成和倒数等级融合重排搜索结果。该项目利用OpenAI的GPT模型生成多样化查询,进行向量搜索,并应用倒数等级融合算法重新排序相关文档。RAG-Fusion致力于挖掘隐藏在热门结果之外的深层知识,推动搜索技术迈向新前沿。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号