Project Icon

autonomous-learning-library

PyTorch深度强化学习库助力智能代理开发

autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。

AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
rl_games - 强化学习框架支持多环境及算法的高性能实现
GPU加速GithubRL Games多智能体训练开源项目强化学习机器人学习
rl_games是一个高性能强化学习库,实现了PPO、A2C等算法,支持NVIDIA Isaac Gym、Brax等环境的GPU加速训练。该库具备异步actor-critic、多智能体训练、自对弈等功能,可在多GPU上并行。rl_games提供Colab notebook示例便于快速上手,在多个基准测试中表现出色。作为一个功能丰富的强化学习工具,rl_games兼具高性能和易用性。
OfflineRL-Kit - 高效易用的PyTorch离线强化学习库
GithubPyTorch实验管理开源项目模型训练离线强化学习算法库
OfflineRL-Kit是基于PyTorch的离线强化学习库,提供清晰的代码结构和最新算法实现。支持CQL、TD3+BC等多种算法,具备高扩展性和强大的日志系统。该库还支持并行调优,便于研究人员进行实验。相比其他离线强化学习库,OfflineRL-Kit在性能和易用性方面都有显著优势,是离线强化学习研究的有力工具。
agents - 可靠、可扩展且易于使用的TensorFlow Contextual Bandits和强化学习库
GithubPythonTF-AgentsTensorFlow上下文赌博机开源项目强化学习
TF-Agents是一个简化实现、部署和测试新Contextual Bandits和强化学习算法的TensorFlow库。它提供了经过充分测试和模块化的组件,方便修改与扩展,加快代码迭代,并拥有良好的测试集成和基准测试功能。TF-Agents支持多种知名算法如DQN、DDPG和PPO,配有详尽的教程和示例,帮助用户快速上手。无论是稳定版还是夜间版,都可以根据需求进行安装使用,且库的开发保持积极进行以确保灵活与前沿。
stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
lerobot - 实用机器学习库助力实际机器人开发
GithubLeRobot开源项目强化学习机器人模拟环境预训练模型
LeRobot是一个基于PyTorch的机器人应用开发库,提供模型、数据集和工具。它侧重模仿学习和强化学习,包含预训练模型、人类示范数据集和仿真环境,降低机器人技术门槛。该库支持ALOHA、PushT和XArm等多种环境和策略,未来将扩展实际机器人支持。LeRobot旨在促进数据集和预训练模型的共享,推动机器人技术发展。
PufferLib - 复杂游戏环境强化学习的简化工具
GithubPufferLibPyTorch开源项目强化学习环境包装
PufferLib是一个包装层工具,旨在简化复杂游戏环境中的强化学习开发。它支持原生PyTorch网络和简短的环境绑定,自动处理大部分复杂操作。该工具提供优化的LSTM支持、性能指标、本地仪表板、异步环境采样和检查点等功能,为强化学习研究提供全面解决方案。
RLcycle - 开源强化学习框架 提供多种算法实现
GithubHydraPyTorchRayWandB开源项目强化学习
RLcycle是一个开源的强化学习框架,实现了多种经典算法如DQN、A2C/A3C、DDPG和SAC。框架基于PyTorch构建,集成了Hydra配置管理、Ray并行计算和WandB日志记录功能。RLcycle提供可重用组件便于快速开发,支持Atari和PyBullet等环境,并附有使用指南和性能基准。该项目适合研究人员和开发者学习和实践各类强化学习算法。
Reinforcement-Learning - 将深度强化学习与神经网络使用Python和PyTorch实现结合的课程
GithubPyTorchPythonQ学习开源项目深度强化学习神经网络
本课程深入分析了神经网络与强化学习的结合,提供了Python和PyTorch实用实现。掌握Q学习、深度Q学习、PPO和演员批评算法,通过在OpenAI Gym的RoboSchool和Atari游戏中实际应用,熟悉深度强化学习的关键技术和应用场景。
PARL - 灵活高效的强化学习开源框架
GithubPARL分布式训练并行计算开源项目强化学习深度学习
PARL是一个开源的强化学习框架,专注于提供高效、灵活的开发环境。该框架具有良好的可复现性、大规模训练支持、高可重用性和易扩展性。PARL基于Model、Algorithm和Agent三个核心抽象,并提供简洁的分布式训练API。框架支持DQN、DDPG、SAC等多种算法实现,在多个强化学习挑战赛中表现出色。PARL适用于各类复杂任务的智能体训练,为强化学习研究和应用提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号