Project Icon

vilt-b32-mlm

探索无卷积技术在ViLT模型中的应用

ViLT模型利用无卷积方法在多个数据集进行预训练,专注于掩码语言建模。由Kim等人发布,适用于图像与文本结合场景。可通过PyTorch代码实现简单安装和试用,支持掩码位置的文本填补,推动自然语言处理和图像识别时跨模态学习的进展。

InternVL2-2B - 多模态大语言模型支持多语言及多媒体理解
GithubHuggingfaceInternVL2人工智能多模态大语言模型开源项目模型自然语言处理计算机视觉
InternVL2-2B是一个开源的多模态大语言模型,参数量为2.2B。该模型在文档理解、图表分析和场景文本识别等任务中表现优异,性能接近商业闭源模型。InternVL2-2B支持8K上下文窗口,可处理长文本、多图像和视频输入,大幅提升了多模态理解能力。作为一款出色的开源模型,InternVL2-2B为多模态人工智能研究和应用提供了新的可能性。
cogvlm-chat-hf - 开源视觉语言模型CogVLM在多项跨模态基准测试中超越PaLI-X 55B
CogVLMGithubHuggingface图像识别多模态开源开源项目模型视觉语言模型
CogVLM是一款开源视觉语言模型,具有100亿视觉参数和70亿语言参数。在NoCaps、Flicker30k等10个经典跨模态基准测试中,CogVLM实现了最先进的性能,部分超越PaLI-X 55B。其架构包括视觉变换器编码器、MLP适配器、预训练语言模型和视觉专家模块。CogVLM能进行多模态对话,适用于图像描述和视觉问答等任务。该模型对学术研究开放,经登记后可免费用于商业用途。
NVLM-D-72B - 开源前沿级多模态大语言模型 实现视觉语言任务的最新突破
GithubHuggingfaceNVLM人工智能多模态大语言模型开源项目模型视觉语言
NVLM-D-72B是一款开源的多模态大语言模型,在视觉语言任务上表现卓越,达到了与顶级专有和开源模型相当的水平。该模型不仅擅长视觉语言任务,在多模态训练后其纯文本处理能力也有所提升。NVLM-D-72B可执行光学字符识别、多模态推理、定位、常识推理等多种任务,为AI研究社区提供了强大的开源多模态能力。
ViP-LLaVA - 改进大型多模态模型的视觉提示理解能力
CVPR2024GithubViP-LLaVA多模态模型开源项目视觉提示视觉语言模型
ViP-LLaVA项目旨在提升大型多模态模型对任意视觉提示的理解能力。通过在原始图像上叠加视觉提示进行指令微调,该方法使模型能更好地处理多样化的视觉输入。项目还开发了ViP-Bench,这是首个零样本区域级基准,用于评估多模态模型性能。ViP-LLaVA提供完整的训练流程、模型权重和演示,为视觉语言模型研究提供了有力支持。
xlm-v-base - 多语言模型中的突破性词汇扩展
GithubHuggingfaceXLM-V命名实体识别多语言开源项目模型自然语言推理词汇瓶颈
XLM-V是一个多语言模型,拥有百万词汇表,并在2.5TB数据上进行训练。相比于XLM-R,该模型在语言推理、问答与命名实体识别等任务中表现优异。通过减少语言间的词汇共享,这一创新提高了模型的表现,尤其在词汇重叠较少的语言中。XLM-V不仅提高跨语言任务的效果,也在低资源任务中实现重大突破,为机器学习和语言研究带来更多可能性。
unilm - Unilm项目实现跨任务、语言和模态的大规模自监督预训练
Foundation ModelsGithubLarge-scaleMulti-modalTorchScale开源项目预训练
Unilm项目跨越100多种语言及包括语言、视觉、语音及其交互的多种模态,专注于基础模型和普适AI的研究。该项目已开发多种新型架构如DeepNet、Magneto,并通过稳定高效的训练方法增强模型的通用性和能力。此外,项目已发布关键技术如E5、BEiT-3,涵盖自然语言处理、机器翻译、文档AI及多模态AI等领域,为AI技术的前沿发展和实际应用做出了显著进展。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
InternVL2-Llama3-76B - 融合视觉与语言的多模态AI模型
GithubHuggingfaceInternVL2Llama3NLP多模态大语言模型开源项目模型视觉语言模型
InternVL2-Llama3-76B是一款融合视觉和语言能力的多模态AI模型。它由InternViT-6B视觉模型和Hermes-2-Theta-Llama-3语言模型组成,在文档理解、图表分析和场景文字识别等任务中表现优异。该模型支持8k上下文窗口,可处理长文本、多图像和视频输入,为用户提供全面的多模态分析能力。
multimodal - PyTorch多模态模型开发框架
GithubPyTorchTorchMultimodal多模态模型开源项目机器学习深度学习
TorchMultimodal是基于PyTorch的多模态模型开发框架,提供模块化构建块和预训练模型,支持ALBEF、BLIP-2、CLIP等多种架构。该框架包含训练、微调和评估示例,可用于构建内容理解和生成模型。TorchMultimodal整合了PyTorch生态系统,便于研究人员复现和开发先进的多模态多任务模型。
vit_base_patch16_clip_224.openai - CLIP:跨模态视觉语言理解模型
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉-语言预训练模型,在timm库中实现。它使用ViT-B/16 Transformer作为图像编码器,masked self-attention Transformer作为文本编码器,通过对比学习优化图像-文本对相似度。CLIP在零样本图像分类任务中展现出优秀的鲁棒性和泛化能力,但在细粒度分类和物体计数方面仍有局限。该模型主要面向AI研究人员,用于探索计算机视觉模型的能力和局限性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号