Project Icon

d2l-ai-solutions-manual

《动手学深度学习》习题解答与代码实现

该项目为《动手学深度学习》一书提供全面的习题解答。内容包括详细的代码实现和运行截图,涵盖从预备知识到自然语言处理的各个章节。项目提供在线阅读、环境配置指南和协作规范,旨在帮助初学者更好地理解和实践深度学习概念。作为学习补充资料,本项目特别适合希望将理论知识应用于实践的学习者。

动手学深度学习习题解答

李沐老师的《动手学深度学习》是入门深度学习的经典书籍,这本书基于深度学习框架来介绍深度学习,书中代码可以做到"所学即所用"。对于一般的初学者来说想要独立解答书中课后习题部分还是比较困难。本项目对《动手学深度学习》习题部分进行解答,作为该书的习题手册,帮助初学者快速理解书中内容。

使用说明

动手学深度学习习题解答,主要完成了该书的所有习题,并提供代码和运行之后的截图,里面的内容以深度学习的内容为前置知识,该习题解答的最佳使用方法是以李沐老师的《动手学深度学习》为主线,并尝试完成课后习题,如果遇到不会的,再来查阅习题解答。

如果觉得解答不详细,可以点击这里提交你希望补充推导或者习题编号,我们看到后会尽快进行补充。

在线阅读地址

在线阅读地址:https://datawhalechina.github.io/d2l-ai-solutions-manual

选用的《动手学深度学习》版本

书名:动手学深度学习(PyTorch版)
著者:阿斯顿·张、[美]扎卡里 C. 立顿、李沐、[德]亚历山大·J.斯莫拉
译者:何孝霆、瑞潮儿·胡
出版社:人民邮电出版社
版次:2023年2月第1版

Notebook运行环境配置

  1. 克隆项目请使用如下命令(只克隆最新的 commit ):

    git clone https://github.com/datawhalechina/d2l-ai-solutions-manual.git --depth 1
    
  2. Python版本
    请使用python3.10.X,如使用其他版本,requirements.txt中所列的依赖包可能不兼容。

  3. 安装相关的依赖包

    pip install -r requirements.txt
    
  4. 安装PyTorch

    访问PyTorch官网,选择合适的版本安装PyTorch,有条件的小伙伴可以下载GPU版本

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    
  5. 安装d2l

    pip install d2l
    
  6. docsify框架运行

    docsify serve ./docs
    

协作规范

  1. 由于习题解答中需要有程序和执行结果,采用jupyter notebook的格式进行编写(文件路径:notebooks),然后将其导出成markdown格式,再覆盖到docs对应的章节下。
  2. 可按照Notebook运行环境配置,配置相关的运行环境。
  3. 习题解答编写中,需要尽量使用初学者(有高数基础)能理解的数学概念,如果涉及公式定理的推导和证明,可附上参考链接。
  4. 当前进度
章节号标题进度负责人审核人
2预备知识待审核毛瑞盈、陈可为、胡锐锋
3线性神经网络待审核毛瑞盈、陈可为、胡锐锋
4多层感知机待审核毛瑞盈、陈可为
5深度学习计算待审核宋志学、韩颐堃
6卷积神经网络待审核宋志学、韩颐堃
7现代卷积神经网络待审核宋志学、韩颐堃
8循环神经网络待审核王振凯
9现代循环神经网络待审核王振凯
10注意力机制待审核徐韵婉、崔腾松
11优化算法待审核张银晗、邹雨衡
12计算性能待审核邹雨衡
13计算机视觉待审核刘旭、曾莹
14自然语言处理:预训练待审核肖鸿儒
15自然语言处理:应用待审核张友东、张凯旋

项目结构

codes----------------------------------------------习题代码
docs-----------------------------------------------习题解答
notebook-------------------------------------------习题解答JupyterNotebook格式
requirements.txt-----------------------------------运行环境依赖包

致谢

核心贡献者

  • 宋志学-项目负责人(Datawhale成员-河南理工大学)
  • 胡锐锋-项目发起人(Datawhale成员-华东交通大学-系统架构设计师)
  • 韩颐堃(内容创作者-Datawhale成员)
  • 毛瑞盈(内容创作者)
  • 陈可为(内容创作者-Datawhale成员)
  • 王振凯(内容创作者-Datawhale成员)
  • 崔腾松(Datawhale成员-whale量化开源项目负责人)
  • 徐韵婉(内容创作者-Datawhale成员)
  • 张银晗(内容创作者-Datawhale成员)
  • 邹雨衡(Datawhale成员-对外经济贸易大学研究生)
  • 刘旭(内容创作者-Datawhale成员-深圳大学)
  • 曾莹(内容创作者-深圳大学)
  • 肖鸿儒(内容创作者-同济大学)
  • 张友东(内容创作者-Datawhale成员)
  • 张凯旋(内容创作者-Datawhale成员-上海科技大学)

其他

  • 特别感谢@Sm1les对本项目的帮助与支持
  • 如果有任何想法可以联系我们 DataWhale 也欢迎大家多多提出 issue
  • 特别感谢以下为教程做出贡献的同学!

参考文献

Star历史

Star历史图表

关注我们

扫描下方二维码关注公众号:Datawhale

  Datawhale,一个专注于AI领域的学习圈子。初衷是for the learner,和学习者一起成长。目前加入学习社群的人数已经数千人,组织了机器学习,深度学习,数据分析,数据挖掘,爬虫,编程,统计学,Mysql,数据竞赛等多个领域的内容学习,微信搜索公众号Datawhale可以加入我们。

许可证

知识共享许可协议
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号