Project Icon

easy-rl

强化学习综合教程 从理论到实践

Easy RL是一本全面的强化学习教程,涵盖从基础理论到高级算法的系统知识。内容包括马尔可夫决策过程、Q学习、策略梯度、PPO和DQN等关键概念。通过实例和项目,读者可掌握核心理论和实践技能。教程提供在线阅读、配套习题、代码和补充资源,适合强化学习初学者系统学习使用。

GitHub issues GitHub stars GitHub forks Hits Downloads 知识共享许可协议

蘑菇书EasyRL

李宏毅老师的《深度强化学习》是强化学习领域经典的中文视频之一。李老师幽默风趣的上课风格让晦涩难懂的强化学习理论变得轻松易懂,他会通过很多有趣的例子来讲解强化学习理论。比如老师经常会用玩 Atari 游戏的例子来讲解强化学习算法。此外,为了教程的完整性,我们整理了周博磊老师的《强化学习纲要》、李科浇老师的《世界冠军带你从零实践强化学习》以及多个强化学习的经典资料作为补充。对于想入门强化学习又想看中文讲解的人来说绝对是非常推荐的。

本教程也称为"蘑菇书",寓意是希望此书能够为读者注入活力,让读者"吃"下这本蘑菇之后,能够饶有兴致地探索强化学习,像马里奥那样愈加强大,继而在人工智能领域觅得意外的收获。

使用说明

纸质版

购买链接:京东 | 当当

pic

京东扫码购买

pic

当当扫码购买

豆瓣评分:https://book.douban.com/subject/35781275/

ℹ️ 勘误修订表https://datawhalechina.github.io/easy-rl/#/errata

在线阅读(内容实时更新)

地址:https://datawhalechina.github.io/easy-rl/

最新版PDF下载

地址:https://github.com/datawhalechina/easy-rl/releases

国内地址(推荐国内读者使用):链接: https://pan.baidu.com/s/1isqQnpVRWbb3yh83Vs0kbw 提取码: us6a

压缩版(推荐网速较差的读者使用,文件小,图片分辨率较低):链接: https://pan.baidu.com/s/1mUECyMKDZp-z4-CGjFhdAw 提取码: tzds

纸质版和PDF版的区别

PDF版本是全书初稿,人民邮电出版社的编辑老师们对初稿进行了反复修缮,最终诞生了纸质书籍,在此向人民邮电出版社的编辑老师的认真严谨表示衷心的感谢!(附:校对样稿)

内容导航

算法实战

算法实战部分包括附书代码和JoyRL代码:

经典强化学习论文解读

点击或者网页点击papers文件夹进入经典强化学习论文解读

扩展资源

相关视频内容

贡献者

pic
王琦

教程设计(第1~12章)
上海交通大学博士生
中国科学院大学硕士

pic
杨毅远

习题设计&第13章
牛津大学博士生
清华大学硕士

pic
江季

算法实战
北京大学硕士

引用信息

王琦,杨毅远,江季,Easy RL:强化学习教程,人民邮电出版社,https://github.com/datawhalechina/easy-rl, 2022.
Qi Wang, Yiyuan Yang, Ji Jiang,Easy RL: Reinforcement Learning Tutorial,Posts & Telecom Press,https://github.com/datawhalechina/easy-rl, 2022.
@book{wang2022easyrl,
title = {Easy RL:强化学习教程},
publisher = {人民邮电出版社},
year = {2022},
author = {王琦,杨毅远,江季},
address = {北京},
isbn = {9787115584700},
url = {https://github.com/datawhalechina/easy-rl}
}
@book{wang2022easyrl,
title = {Easy RL: Reinforcement Learning Tutorial},
publisher = {Posts & Telecom Press},
year = {2022},
author = {Qi Wang, Yiyuan Yang, Ji Jiang},
address = {Beijing},
isbn = {9787115584700},
url = {https://github.com/datawhalechina/easy-rl}
}

如果您需要转载该教程的内容,请注明出处:https://github.com/datawhalechina/easy-rl

致谢

特别感谢 @Sm1les@LSGOMYP 对本项目的帮助与支持。

另外,十分感谢大家对于Easy-RL的关注。 Stargazers repo roster for @datawhalechina/easy-rl Forkers repo roster for @datawhalechina/easy-rl

关注我们

扫描下方二维码关注公众号:Datawhale,回复关键词"Easy-RL读者交流群",即可加入"Easy-RL读者交流群"

Datawhale是一个专注AI领域的开源组织,以

许可证

知识共享许可协议
本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。

Star历史

Star历史

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号