Project Icon

dgl

图深度学习框架加速图神经网络应用与研究

DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。

quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
awesome-graph-self-supervised-learning - 自监督学习在图数据中的应用及方法综述
Contrastive LearningGenerative LearningGithubGraph RepresentationPredictive LearningSelf-Supervised Learning开源项目
展示全面的自监督图表示学习资源,包括对比学习、生成学习和预测学习三种主要方法。本页面介绍了各类自监督学习方法在图数据中的应用、训练策略和具体实现,帮助AI研究者掌握最新技术。
chainer - Python深度学习框架,支持动态计算图和CUDA加速
CUDAChainerCuPyGithub开源项目深度学习自动微分
Chainer是一个Python深度学习框架,提供基于define-by-run方法的自动微分API(动态计算图)和面向对象的高级API,用于构建和训练神经网络。通过CuPy支持CUDA/cuDNN,实现高性能训练和推理。尽管Chainer已进入维护阶段,仅进行bug修复和维护,但其文档、教程和社区资源仍然活跃,适合研究和开发深度学习模型的用户。
gflownet - 基于图神经网络的离散对象生成框架
GFlowNetGithub图生成开源项目机器学习神经网络组合优化
gflownet是一个实现Generative Flow Network的开源框架,专注于离散和组合对象的生成,尤其适用于图结构。该项目基于图神经网络,支持多种GFN算法,提供离线和在线训练功能。gflownet包含完整的训练环境、算法实现和示例代码,可用于分子设计等任务,是研究GFN在图生成领域应用的有力工具。
egnn-pytorch - PyTorch实现的E(n)等变图神经网络
EGNNGithub分子预测图神经网络坐标更新开源项目特征更新
这个开源项目使用PyTorch实现了E(n)等变图神经网络(EGNN)。项目提供了EGNN的简洁接口,支持边特征和稀疏邻居等功能。EGNN在动力系统建模和分子活性预测等任务中表现领先。项目还包含详细示例和稳定性优化方法,适用于处理复杂的图结构数据。
dl_note - 深度学习全栈指南 从计算机视觉到大语言模型
GithubLLM开源项目推理部署模型压缩深度学习神经网络
dl_note项目是一个综合性深度学习资源库,涵盖从数学基础到模型部署的全过程。内容包括神经网络基础、深度学习技巧、模型压缩、推理优化及大语言模型等。项目注重实际应用,提供详细代码解析和实战经验,适合深度学习技术的学习者和从业者参考使用。
gpt-neox - 大规模语言模型训练库,支持多系统和硬件环境
DeepSpeedEleutherAIFlash AttentionGPT-NeoXGithubMegatron Language Model开源项目
GPT-NeoX是EleutherAI开发的库,专注于在GPU上训练大规模语言模型。它基于NVIDIA的Megatron,并结合了DeepSpeed技术,提供前沿的架构创新和优化,支持多种系统和硬件环境。广泛应用于学术界、工业界和政府实验室,支持AWS、CoreWeave、ORNL Summit等多个平台。主要功能包括分布式训练、3D并行、旋转和嵌入技术,以及与Hugging Face等开源库的无缝集成。
accel-brain-code - 深度学习和机器学习算法库集合
Github开源项目强化学习机器学习深度学习生成对抗网络自动编码器
accel-brain-code是一个开源项目,集成了多个深度学习和机器学习算法库。它包括自动编码器、生成对抗网络、深度强化学习等模块,旨在通过概念验证和研发创建原型。该项目探索了AI民主化后的机器学习研发可能性,为快速开发复杂AI系统提供了基础。其功能涵盖自动摘要、强化学习、生成对抗网络等多个领域。
graph_nets - DeepMind的图神经网络库,支持TensorFlow和Sonnet
GithubGraph NetsSonnetTensorFlow安装开源项目演示
Graph Nets是由DeepMind开发的图神经网络库,兼容TensorFlow和Sonnet。支持Linux和Mac OS X,以及Python 2.7和3.4+。该库适用于CPU和GPU版本的TensorFlow,但需要单独安装TensorFlow。Graph Nets提供了详细的安装指南、使用示例和多个演示,包括最短路径、排序和物理预测任务。用户可以通过Colaboratory在浏览器中运行这些演示,体验图神经网络的灵活性和强大功能。
dlib - 现代C++机器学习工具包,实现高效复杂软件开发
C++GithubPython APIdlib开源项目机器学习编译
dlib是一个功能丰富的C++工具库,专注于机器学习解决方案,支持快速编译和高效运算。提供完整的Python集成和标准Boost许可,适用于各类项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号