Project Icon

dgl

图深度学习框架加速图神经网络应用与研究

DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。

CogDL - 应用于节点分类、图分类等任务的图深度学习工具包
CogDLGNNGPU优化Github图深度学习开源项目自动机器学习
CogDL是一个应用于节点分类、图分类等任务的图深度学习工具包。它具备高效性、易用性和可扩展性的特点,通过提供优化的操作符加快训练速度并节省GPU内存。CogDL还提供易用的API,并支持广泛的模型和数据集。最新版新增了图自监督学习示例和混合精度训练功能,适用于多种图神经网络分析任务。
PyDGN - 深度图网络研究与实验的Python开源库
GithubPyDGNPython库图分类开源项目机器学习深度图网络
PyDGN是一个面向深度图网络(DGNs)研究的开源Python库。该库提供自动化的数据处理、实验管理和并行计算功能,支持模型选择与风险评估。PyDGN简化了图学习实验流程,有助于快速原型设计和结果复现,为图神经网络研究提供了实用工具。它支持CPU和GPU并行计算,可同时评估多种模型配置。PyDGN适用于各类深度图网络研究,包括图分类、节点分类等任务。该库提供了完整的实验管理流程,从数据预处理到模型评估,有助于提高研究效率和结果可靠性。
DIG - 图深度学习的综合平台,支持高级图生成、自监督学习和三维图研究
DGLDIGGithubPyG图深度学习图生成开源项目
DIG提供统一的数据接口、常用算法和评估指标,支持高级图深度学习任务如图生成、自监督学习、解释性、三维图、OOD图的开发和基准测试。DIG帮助研究人员轻松开发新方法并与基线方法进行比较。最新版本基于PyG 2.0.0升级,推荐使用。
graph-learn - 大规模分布式图神经网络框架,兼容PyTorch和TensorFlow
GithubGraph-Learn分布式框架图神经网络大规模图数据实时推理开源项目
Graph-Learn是一款分布式框架,专为开发和应用大规模图神经网络(GNN)而设计,已成功应用于阿里巴巴的搜索推荐、网络安全和知识图谱等场景。框架包括GraphLearn-Training和Dynamic-Graph-Service模块,支持批量图采样、在线推理及流图更新功能,兼容PyTorch和TensorFlow,提供完整的GNN模型开发解决方案。
gnn - 用于TensorFlow平台的图神经网络库,支持异构和同构图
GithubKeras层TensorFlow GNN分布式图采样工具图神经网络开源项目数据准备工具
TensorFlow GNN是一个用于TensorFlow平台的图神经网络库,支持异构和同构图。它提供了GraphTensor类型来表示多类型节点和边,数据准备工具以及高效的图采样器。库中包含可直接使用的模型和Keras层,提供高层次的训练API。TF-GNN广泛应用于各种图挖掘任务,用户可在Google Colab上无需安装直接运行示例。它兼容TensorFlow 2.12及以上版本和相关GPU驱动,主要在Linux环境测试。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
DeepSpeed - 一个深度学习优化库,专为大规模模型训练和推理设计
DeepSpeedGithub分布式训练大规模模型训练开源项目模型压缩模型推理
DeepSpeed 是一个深度学习优化软件套件,专为大规模模型训练和推理设计,能显著优化系统性能和降低成本。它支持亿级至万亿级参数的高效管理,兼容各种计算环境,从资源受限的GPU系统到庞大的GPU集群。此外,DeepSpeed 在模型压缩和推理领域亦取得创新成就,提供极低的延迟和极高的处理速率。
grape-book - 图深度学习入门指南 理论与实践并重
DGLGithubNetworkX图深度学习图神经网络开源项目葡萄书
本教程基于京东团队、密西根州立大学和斯坦福大学CS224W课程内容,提供图深度学习从入门到应用的全面指导。涵盖图理论基础、深度学习基础、经典图神经网络模型,并结合NetworkX、DGL和PyG框架的实践代码,助力读者系统掌握图深度学习知识。
pyg-lib - 图形神经网络高性能计算库
CUDAGithubPyTorchPythonpyg-lib安装开源项目
pyg-lib是一款专为图形神经网络优化的高性能计算库。该项目为Linux、Windows和macOS等主流操作系统提供预构建的Python包,兼容多个PyTorch版本和CUDA组合,支持Python 3.8至3.12。pyg-lib通过提升图形神经网络的计算效率,为研究和开发提供了实用工具。研究人员和开发者可根据具体的系统环境,使用pip命令快速安装所需版本,轻松增强图形神经网络的性能。
gluon-cv - 计算机视觉领域的深度学习模型工具包,支持PyTorch和MXNet框架
GithubGluonCV图像分类对象检测开源项目深度学习计算机视觉
GluonCV是一个面向工程师、研究人员和学生的计算机视觉深度学习工具包,支持快速原型设计。其主要功能包括可复现SOTA结果的训练脚本、对PyTorch和MXNet框架的支持、大量预训练模型,以及简化实现的API设计和社区支持。用户还可以通过AutoGluon执行图像分类和目标检测任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号