Project Icon

dgl

图深度学习框架加速图神经网络应用与研究

DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。

graph-neural-network-course - 图神经网络教程,从基础架构到前沿技术
GithubPyTorch Geometric图分类图神经网络开源项目深度学习节点分类
这个项目是一个全面的图神经网络(GNN)教程,内容涵盖基础架构到最新技术。课程包含四个章节:GNN简介、图注意力网络、GraphSAGE和图同构网络,每章配有详细文章和实践代码。教程旨在帮助学习者掌握GNN的核心概念和实现方法,适合对深度学习感兴趣的研究者和开发者。
LightGBM - 高效梯度提升框架 支持大规模数据并行学习
GithubLightGBM决策树开源项目数据分析机器学习梯度提升
LightGBM是一个高效的梯度提升框架,采用树形学习算法。它具有训练速度快、内存消耗低、准确性高的特点,支持并行、分布式和GPU学习,可处理大规模数据。这个开源项目在机器学习竞赛中应用广泛,在公开数据集上的表现优于多个现有框架。LightGBM为用户提供了详细文档和丰富示例,适用于多种机器学习任务。
OpenGraph - 图神经网络零样本学习的突破性研究
GithubOpenGraph图生成图神经网络大语言模型开源项目零样本学习
OpenGraph是一个创新的图基础模型,通过从大语言模型中提取零样本图泛化能力,解决了图神经网络领域的关键技术挑战。该模型引入了统一图标记器、可扩展图transformer和基于大语言模型的数据增强机制,在多种场景下展现出优异的零样本图学习性能。这项研究为图神经网络的泛化能力提升和应用场景拓展开辟了新方向。
autogluon - 自动化机器学习工具,简单实现高精度预测
AutoGluonGithubPython开源项目机器学习深度学习自动化
AutoGluon简化了机器学习任务,让用户可以在图像、文本、时间序列和表格数据上轻松训练和部署高精度模型。它支持Python 3.8至3.11,并可在Linux、MacOS和Windows上运行。只需几行代码即可快速构建端到端机器学习模型,提供详细的安装指南、快速入门教程和丰富的资源,适合各层次用户的需求。
graphstorm - 训练和部署大规模图机器学习模型的企业级框架
GithubGraphStorm分布式训练图机器学习开源项目节点分类链接预测
GraphStorm是一个面向企业的图机器学习框架,能处理数十亿节点和边的超大规模图。它提供可扩展的训练和推理管道,内置多种GML模型,支持一键训练。框架还提供丰富配置选项用于自定义模型和训练流程,并支持分布式训练自定义GML模型,只需提供模型实现即可实现扩展。
DALI - 加速深度学习应用的GPU加速数据加载与预处理库
GPU加速GithubNVIDIA DALI多框架支持开源项目数据预处理深度学习
NVIDIA DALI是一个GPU加速的数据加载和预处理库,专为提高深度学习应用效率而设计。它提供了一套优化的工具,改善图像、视频和音频的处理,同时解决CPU瓶颈,支持跨多平台框架使用。此外,DALI利用GPUDirect Storage技术,从而实现从存储到GPU内存的直接数据传输,显著提升处理速度。
deep-learning-roadmap - 为开发者和研究人员提供的从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域深度学习的综合资源,
Github卷积神经网络图像识别开源项目强化学习深度学习生成模型
为开发者和研究人员提供深度学习的综合资源,从入门到高级应用全覆盖,涵盖图像识别、自然语言处理等关键领域。借助本平台,您可以迅速找到所需资源,掌握最前沿的深度学习技术。
DI-hpc - 高性能计算组件加速强化学习算法
CUDADI-HPCGithubPyTorch开源项目强化学习算法加速
DI-HPC是一款专为强化学习算法设计的高性能计算组件,主要用于加速GAE、n-step TD和LSTM等常见模块。该组件支持前向和反向传播,适用于训练、数据收集和测试环节。DI-HPC兼容CUDA环境和多个PyTorch版本,提供简便的安装方式和性能测试工具。通过提升计算效率,DI-HPC为强化学习研究和开发提供了有力支持。
spektral - 基于Keras API和TensorFlow 2的Python库,专为图神经网络(GNN)提供简单灵活的框架
GithubKerasPython库Spektral图深度学习图神经网络开源项目
Spektral是一个基于Keras API和TensorFlow 2的Python库,专为图神经网络(GNN)提供简单灵活的框架。该库适用于社交网络用户分类、分子性质预测、图生成、节点聚类和链接预测等任务。Spektral包含多种流行的图深度学习层,如GCN、Chebyshev、GraphSAGE、GAT等,并提供丰富的图操作工具。最新版1.0引入了新数据集、新容器、Loader类和transforms模块,简化了数据处理和模型训练。更多信息请参阅官方文档和示例。
djl - 简洁易用的Java深度学习框架,支持多引擎切换
Deep Java LibraryGithubJava框架开源开源项目机器学习深度学习
Deep Java Library (DJL) 是一个开源、高级、与深度学习引擎无关的Java框架,提供简单易用的深度学习体验。Java开发者无需成为机器学习专家即可使用现有技能构建、训练和部署模型。DJL支持自动选择CPU/GPU并提供最佳性能,用户可以随时在项目中切换引擎。其符合人体工程学的API接口指导用户完成深度学习任务,支持从模型加载到训练和推理的全流程操作,简化深度学习模型的集成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号