Project Icon

dgl

图深度学习框架加速图神经网络应用与研究

DGL是一个高效易用的Python包,支持在图上执行深度学习。兼容PyTorch、Apache MXNet和TensorFlow等多种框架,提供GPU加速的图库、丰富的GNN模型示例、全面的教学材料及优化的分布式训练功能。适合从研究人员到行业专家的各类用户。广泛应用于学术及实践领域,无论是基础教学还是高级图分析,DGL均能有效支持。

distributed-llama - 优化大型语言模型的分布式计算性能
Distributed LlamaGithubLlama 3Python 3TCP socketsTensor parallelism开源项目
通过分布式计算技术,分散大型语言模型(LLMs)的工作负载到多个设备上,即使是性能较弱的设备也能运行强大的LLMs。项目使用TCP sockets同步状态,用户可以使用家庭路由器轻松配置AI集群,实现显著加速效果。Distributed Llama支持多种模型架构,提供简便的设置和操作方法,用户可以在本地运行大规模语言模型。
gpytorch - 基于PyTorch实现的灵活高斯过程建模工具
GPU加速GPyTorchGaussian processGithubKISS-GPPyTorch开源项目
GPyTorch是一个基于PyTorch实现的高斯过程库,旨在简便地创建可扩展、灵活的高斯过程模型。它通过数值线性代数技术实现了显著的GPU加速,并集成了如SKI/KISS-GP和随机Lanczos展开等先进算法,同时能与深度学习框架无缝结合。支持Python 3.8及以上版本。更多信息、示例和教程请参阅官方文档。
GaNDLF - 通用深度学习框架支持多种医学影像分析任务
GaNDLFGithubMLCommons医学影像分析开源项目深度学习框架
GaNDLF是一个通用深度学习框架,支持多种模型架构、数据维度和医学影像分析任务。框架内置嵌套交叉验证、数据增强和混合精度训练功能,适用于放射学和组织病理学图像处理。GaNDLF简化了深度学习开发流程,提高了模型可重现性和可解释性,使非专业人士也能轻松使用。
Deep-Learning-Experiments - 深度学习实验和课程指南,涵盖理论与实践
Deep LearningGithubLLMPyTorchSupervised LearningTransformer开源项目
本页面介绍2023版深度学习实验课程,包括理论与实践内容。涵盖监督学习、多层感知器、优化、正则化、卷积神经网络、变压器、自编码器、生成对抗网络和大型语言模型等主题,并提供开发环境、Python、Numpy、PyTorch及Gradio的实践指南。所有文档和代码示例在GitHub上提供,帮助学习者掌握深度学习技术。
dfdx - Rust中的深度学习库,提供GPU加速和编译时类型检查
GPU加速GithubRustdfdx开源项目深度学习神经网络
dfdx是一个注重人体工学和安全性的Rust深度学习库,支持GPU加速和最多6维的张量形状。它在编译时进行形状和类型检查,提供多种张量操作,例如矩阵乘法和卷积。该库还包含神经网络构建模块和标准的深度学习优化器,如Sgd和Adam。设计目标是性能最大化和最小化不安全代码。用户可以启用CUDA特性进行GPU加速,非常适合在Rust中进行深度学习开发的用户。
GraphScope - 统一分布式图计算平台
GithubGraphScopePython接口分布式系统图计算大规模图处理开源项目
GraphScope是一个统一的分布式图计算平台,通过Python接口在计算机集群上执行各种图操作。它整合了GRAPE、MaxGraph和Graph-Learn等技术,分别用于图分析、交互式查询和图神经网络计算,并利用Vineyard存储实现高效内存数据传输。该平台能够处理大规模图数据,适用于复杂的图计算场景,为用户提供全面的图数据处理解决方案。
deeplearning4j - 多语言与硬件兼容的JVM深度学习框架
DataVecEclipse Deeplearning4JGithubND4JSameDiff开源项目深度学习
DL4J生态系统为JVM应用提供全方位深度学习支持,覆盖数据预处理、模型构建与优化。支持多种编程语言和硬件平台,包括DL4J、ND4J、SameDiff和DataVec模块,兼容Keras和TensorFlow模型并支持分布式训练。适用于Windows、Linux和macOS,提升JVM深度学习应用能力。了解更多信息,请访问官方文档。
DeepSpeed-MII - 开源低延迟模型推理库
DeepSpeed-MIIGithub优化技术低延迟开源项目模型支持高吞吐量
DeepSpeed-MII是一款开源Python库,专注于高吞吐量、低延迟和成本效益的模型推理。支持的技术包括块状KV缓存、连续批处理、高性能CUDA内核等,适用于37000多个模型,如Llama-2、Mixtral和Phi-2。v0.2版本提升了性能和功能,吞吐量提高至2.5倍。适用于语言模型及图像生成任务。
pytorch-lightning - 深度学习框架的全方位AI模型训练与部署解决方案
AI模型训练GithubLightning FabricPyTorch Lightning开源项目模型部署深度学习热门
深度学习框架Pytorch-Lightning 2.0版本现已推出,提供清晰稳定的API,支持AI模型的预训练、微调和部署。该框架轻松实现Pytorch代码组织,将科学研究与工程实现分离,帮助研究人员和工程师高效进行模型训练与部署。通过提供各种训练和部署选项以及兼容多种硬件和加速器,Pytorch-Lightning兼顾模型的灵活性和可扩展性,适应从初学者到专业AI研究的不同需求。
deepdow - 融合深度学习的投资组合优化框架
GithubPython包开源项目投资组合优化权重分配梯度下降深度学习
deepdow是一个Python开源项目,致力于连接投资组合优化和深度学习。它通过构建完全可微分的层级管道,实现市场预测和优化问题设计的融合。该框架支持单次前向传递完成权重分配,集成可微凸优化技术,并提供多种数据加载策略。deepdow适用于CPU和GPU环境,为研究人员提供了灵活的实验平台。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号