Project Icon

spacy-course

基于spaCy的高级自然语言处理免费在线课程

课程内容从NLP基础到高级主题,包括使用规则和机器学习方法构建自然语言理解系统。采用开源框架spaCy,支持多种语言,并提供交互式编程环境。适合自学者免费学习使用,掌握实用的自然语言处理技能。

Advanced NLP with spaCy: A free online course

This repo contains both an online course, as well as its modern open-source web framework. In the course, you'll learn how to use spaCy to build advanced natural language understanding systems, using both rule-based and machine learning approaches. The front-end is powered by Gatsby, Reveal.js and Plyr, and the back-end code execution uses Binder 💖 It's all open-source and published under the MIT license (code and framework) and CC BY-NC (spaCy course materials).

This course is mostly intended for self-study. Yes, you can cheat – the solutions are all in this repo, there's no penalty for clicking "Show hints" or "Show solution", and you can mark an exercise as done when you think it's done.

Azure Pipelines Netlify Status Binder

💬 Languages and Translations

If you spot a mistake, I always appreciate pull requests!

1. This is the language used for the text examples and resources used in the exercises. For example, the German version of the course also uses German text examples and models. It's not always possible to translate all code examples, so some translations may still use and analyze English text as part of the course.

Related resources

💁 FAQ

Is this related to the spaCy course on DataCamp?

I originally developed the content for DataCamp, but I wanted to make a free version to make it available to more people, and so you don't have to sign up for their service. As a weekend project, I ended up putting together my own little app to present the exercises and content in a fun and interactive way.

Can I use this to build my own course?

Probably, yes! If you've been looking for a DIY way to publish your materials, I hope that my little framework can be useful. Because so many people expressed interest in this, I put together some starter repos that you can fork and adapt:

Why the different licenses?

The source of the app, UI components and Gatsby framework for building interactive courses is licensed as MIT, like pretty much all of my open-source software. The course materials themselves (slides and chapters), are licensed under CC BY-NC. This means that you can use them freely – you just can't make money off them.

I want to help translate this course into my language. How can I contribute?

First, thanks so much, this is really cool and valuable to the community 🙌 I've tried to set up the course structure so it's easy to add different languages: language-specific files are organized into directories in exercises and chapters, and other language specific texts are available in locale.json. If you want to contribute, there are two different ways to get involved:

  1. Start a community translation project. This is the easiest, no-strings-attached way. You can fork the repo, copy-paste the English version, change the language code, start translating and invite others to contribute (if you like). If you're looking for contributors, feel free to open an issue here or tag @spacy_io on Twitter so we can help get the word out. We're also happy to answer your questions on the issue tracker.

  2. Make us an offer. We're open to commissioning translations for different languages, so if you're interested, email us at contact@explosion.ai and include your offer, estimated time schedule and a bit about you and your background (and any technical writing or translation work you've done in the past, if available). It doesn't matter where you're based, but you should be able to issue invoices as a freelancer or similar, depending on your country.

I want to help create an audio/video tutorial for an existing translation. How can I get involved?

Again, thanks, this is super cool! While the English and German videos also include a video recording, it's not a requirement and we'd be happy to just provide an audio track alongside the slides. We'd take care of the postprocessing and video editing, so all we need is the audio recording. If you feel comfortable recording yourself reading out the slide notes in your language, email us at contact@explosion.ai and make us an offer and include a bit about you and similar work you've done in the past, if available.

🎛 Usage & API

Running the app

To start the local development server, install Gatsby and then all other dependencies, then use npm run dev to start the development server. Make sure you have at least Node 10.15 installed.

npm install -g gatsby-cli  # Install Gatsby globally
npm install                # Install dependencies
npm run dev                # Run the development server

If running with docker just run make build and then make gatsby-dev

How it works

When building the site, Gatsby will look for .py files and make their contents available to query via GraphQL. This lets us use the raw code within the app. Under the hood, the app uses Binder to serve up an image with the package dependencies, including the spaCy models. By calling into JupyterLab, we can then execute code using the active kernel. This lets you edit the code in the browser and see the live results. Also see my juniper repo for more details on the implementation.

To validate the code when the user hits "Submit", I'm currently using a slightly hacky trick. Since the Python code is sent back to the kernel as a string, we can manipulate it and add tests – for example, exercise exc_01_02_01.py will be validated using test_01_02_01.py (if available). The user code and test are combined using a string template. At the moment, the testTemplate in the meta.json looks like this:

from wasabi import msg
__msg__ = msg
__solution__ = """${solution}"""
${solution}

${test}
try:
    test()
except AssertionError as e:
    __msg__.fail(e)

If present, ${solution} will be replaced with the string value of the submitted user code. In this case, we're inserting it twice: once as a string so we can check whether the submission includes something, and once as the code, so we can actually run it and check the objects it creates. ${test} is replaced by the contents of the test file. I'm also making wasabi's printer available as __msg__, so we can easily print pretty messages in the tests. Finally, the try/accept block checks if the test function raises an AssertionError and if so, displays the error message. This also hides the full error traceback (which can easily leak the correct answers).

A test file could then look like this:

def test():
    assert "spacy.load" in __solution__, "Are you calling spacy.load?"
    assert nlp.meta["lang"] == "en", "Are you loading the correct model?"
    assert nlp.meta["name"] == "core_web_sm", "Are you loading the correct model?"
    assert "nlp(text)" in __solution__, "Are you processing the text correctly?"
    assert "print(doc.text)" in __solution__, "Are you printing the Doc's text?"

    __msg__.good(
        "Well done! Now that you've practiced loading models, let's look at "
        "some of their predictions."
    )

With this approach, it's not always possible to validate the input perfectly – there are too many options and we want to avoid false positives.

Running automated tests

The automated tests make sure that the provided solution code is compatible with the test file that's used to validate submissions. The test suite is powered by the pytest framework and runnable test files are generated automatically in a directory __tests__ before the test session starts. See the conftest.py for implementation details.

# Install requirements
pip install -r binder/requirements.txt
# Run the tests (will generate the files automatically)
python -m pytest __tests__

If running with docker just run make build and then make pytest

Directory Structure

├── binder
|   └── requirements.txt  # Python dependency requirements for Binder
├── chapters              # chapters, grouped by language
|   ├── en                # English chapters, one Markdown file per language
|   |   └── slides        # English slides, one Markdown file per presentation
|   └── ...               # other languages
├── exercises             # code files, tests and assets for exercises
|   ├── en                # English exercises, solutions, tests and data
|   └── ...               # other languages
├── public                # compiled site
├── src                   # Gatsby/React source, independent from content
├── static                # static assets like images, available in slides/chapters
├── locale.json           # translations of meta and UI text
├── meta.json             # course metadata
└── theme.sass            # UI theme colors and settings

Setting up Binder

The requirements.txt in the repository defines the packages that are installed when building it with Binder. For this course, I'm using the source repo as the Binder repo, as it allows to keep everything in one place. It also lets the exercises reference and load other files (e.g. JSON), which will be copied over into the Python environment. I build the binder from a branch binder, though, which I only update if Binder-relevant files change. Otherwise, every update to master would trigger an image rebuild.

You can specify the binder settings like repo, branch and kernel type in the "juniper" section of the meta.json. I'd recommend running the very first build via the interface on the Binder website, as this gives you a detailed build log and feedback on whether everything worked as expected. Enter your repository URL, click "launch" and wait for it to install the dependencies and build the image.

Binder

File formats

Chapters

Chapters are placed in /chapters and are Markdown files consisting of <exercise> components. They'll be turned into pages, e.g. /chapter1. In their frontmatter block at the top of the file, they need to specify type: chapter, as well as the following meta:

---
title: The chapter title
description: The chapter description
prev: /chapter1 # exact path to previous chapter or null to not show a link
next: /chapter3 # exact path to next chapter or null to not show a link
id: 2 # unique identifier for chapter
type: chapter # important: this creates a standalone page from the chapter
---

Slides

Slides are placed in /slides and are markdown files consisting of slide content, separated by ---. They need to specify the following frontmatter block at the top of the file:

---
type: slides
---

The first and last slide use a special layout and will display the headline in the center of the slide. Speaker notes (in this case, the script) can be added at the end of a slide, prefixed by Notes:. They'll then be shown on the right next to the slides. Here's an example slides file:

---
type: slide
---

# Processing pipelines

Notes: This is a slide deck about processing pipelines.

---

# Next slide

- Some bullet points here
- And another bullet point

<img src="/image.jpg" alt="An image located in /static" />

Custom Elements

When using custom elements, make sure to place a newline between the opening/closing tags and the children. Otherwise, Markdown content may not render correctly.

<exercise>

Container of a single exercise.

ArgumentTypeDescription
idnumber / stringUnique exercise ID within chapter.
titlestringExercise title.
typestringOptional type. "slides" makes container wider and adds icon.
children-The contents of the exercise.
<exercise id="1" title="Introduction to spaCy">

Content goes here...

</exercise>

<codeblock>

ArgumentTypeDescription
idnumber / stringUnique identifier of the code exercise.
sourcestringName of the source file (without file extension). Defaults to exc_${id} if not set.
solutionstringName of the solution file (without file extension). Defaults to solution_${id} if not set.
teststringName of the test file (without file extension). Defaults to
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号