Project Icon

mask2former-swin-large-coco-panoptic

基于Transformer架构的高效图像分割模型

Mask2Former-Swin-Large是一个基于COCO数据集训练的图像分割模型,通过多尺度可变形注意力和掩码注意力机制,实现了实例、语义和全景分割的统一处理。相比MaskFormer具有更高的性能和计算效率

segformer-b3-fashion - 高效精准的时尚服饰语义分割模型
GithubHuggingfaceSegFormer图像分割开源项目服装识别模型深度学习计算机视觉
SegFormer-b3-fashion是一个基于SegFormer架构的语义分割模型,针对时尚服饰领域进行了优化。该模型可识别和分割图像中46种不同的服饰元素,涵盖衣物、配饰和细节特征。它采用transformer技术,在保持精确度的同时提供高效设计,适用于时尚分析和虚拟试衣等应用场景。
SpA-Former-shadow-removal - Transformer模型实现高效图像去阴影
GithubIJCNN 2023SpA-FormerTransformer图像阴影去除开源项目注意力机制
SpA-Former是一种基于Transformer的图像去阴影模型,采用空间注意力机制提取阴影特征。在ISTD数据集上,该模型在PSNR、SSIM和RMSE指标方面表现出色。SpA-Former具有参数量少、计算效率高的特点,适用于实际场景的阴影去除。该研究已在IJCNN 2023会议发表,并开源了预训练模型和测试结果,便于研究者复现和对比。
segment-anything-2 - 新一代图像和视频分割基础模型
AI模型GithubSAM 2图像分割开源项目视频分割计算机视觉
SAM 2是Meta AI研发的图像和视频分割基础模型,扩展了SAM的功能。它采用transformer架构和流式内存,实现实时视频处理。通过模型循环数据引擎,研究团队构建了大规模视频分割数据集SA-V。SAM 2在多种视觉任务中展现出卓越性能,为计算机视觉领域带来新的可能。
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
upernet-swin-large - Swin Transformer 与 UperNet 结合的语义分割方法
GithubHuggingfaceSwin TransformerUperNet开源项目模型特征金字塔网络视觉语义分割
UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。
GLaMM-GranD-Pretrained - 基于GranD数据集的区域级理解和分割预训练模型
GLaMM-GranD-PretrainedGithubHuggingface图像分割大规模数据集开源项目模型深度学习计算机视觉
GLaMM-GranD-Pretrained是基于GranD数据集预训练的模型,专注于区域级理解和分割掩码生成。GranD数据集包含7.5百万个独特概念和810百万个带分割掩码的区域,通过自动化注释流程生成。该模型为计算机视觉任务提供高级像素分割能力。研究者可通过GitHub或Hugging Face获取模型,并参考相关论文和项目页面深入了解。
Mask3D - 改进3D语义实例分割方法,兼容多种数据集
3D实例分割GithubICRA 2023Mask3DPyTorchScanNet开源项目
Mask3D是一个提升3D语义实例分割的开源项目,支持ScanNet、ScanNet200、S3DIS和STPLS3D数据集。项目集成了PyTorch、PyTorch Lightning和Hydra工具,提供高效的架构和训练流程,包括数据预处理、模型训练与测试。此外,Mask3D在多个挑战中表现优异,包括在ECCV 2022的Urban3D挑战中获得第二名。
upernet-swin-small - UperNet结合Swin Transformer实现精确语义分割
GithubHuggingfaceSwin TransformerUperNet场景理解开源项目模型视觉转换语义分割
UperNet结合Swin Transformer骨干网络,提供高效的语义分割解决方案,适用于多种视觉任务,实现每像素精确语义标签预测。
superpoint_transformer - 高效3D场景语义和全景分割的超点变换器
3D全景分割3D语义分割GithubICCV 2023SuperClusterSuperpoint Transformer开源项目
Superpoint Transformer 是一种超点 transformer 架构,适用于大规模 3D 场景的语义分割。通过自注意机制和层次化超点结构,它能多尺度挖掘超点间关系,性能卓越。同时,SuperCluster 将全景分割任务转化为超点图聚类任务,能在单个 GPU 上处理大规模场景。项目亮点包括显著的SOTA表现、快速训练和预处理等。点击查看更多详情及项目更新。
swinv2-tiny-patch4-window16-256 - Swin Transformer v2:分层特征图构建的高效视觉模型
GithubHuggingfaceSwin Transformer v2图像分类开源项目模型深度学习神经网络计算机视觉
Swin Transformer v2是一种改进的视觉模型,通过合并图像块构建分层特征图,适用于图像分类和密集识别任务。它采用局部窗口自注意力机制,实现了线性计算复杂度。模型引入残差后归一化、余弦注意力和对数间隔连续位置偏置等技术,提升训练稳定性和迁移能力。同时,利用SimMIM自监督预训练方法减少了对大量标记图像的依赖。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号