Project Icon

dinov2

通过无监督学习构建强大视觉特征的先进方法

DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。

Depth-Anything - 大规模无标注数据驱动的强大单目深度估计模型
Depth AnythingGithub人工智能图像处理开源项目深度估计计算机视觉
Depth Anything是一款基于大规模数据训练的单目深度估计模型。它利用150万标注图像和6200万无标注图像进行训练,提供小型、中型和大型三种预训练模型。该模型不仅支持相对深度和度量深度估计,还可用于ControlNet深度控制、场景理解和视频深度可视化等任务。在多个基准数据集上,Depth Anything的性能超越了此前最佳的MiDaS模型,展现出优异的鲁棒性和准确性。
D-FINE - 精细化分布优化在实时物体检测中的应用
D-FINEDETRFine-grained Distribution RefinementGithub对象检测开源项目自蒸馏
D-FINE是一款实时物体检测工具,通过重新定义DETRs中的边框回归任务为精细化分布优化(FDR)以及引入全局最优定位自蒸馏(GO-LSD),在不增加推理和训练成本的情况下,提升了检测性能。它在复杂街道场景下具有出色的定位能力,对于逆光、运动模糊和密集人群等挑战表现优异。最新版本增强了预训练模型的性能并提供了自定义数据集微调和输入尺寸调整的配置。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
d2l-zh - 深度学习的全面入门指南
D2L.aiGithub工程技能开源项目数学原理深度学习
《动手学深度学习》是一个免费在线资源,提供概念讲解、数学背景知识和实际代码示例,旨在帮助读者掌握深度学习的原理和应用。该项目致力于培养读者成为能够理解数学原理并实现和改进方法的深度学习应用科学家,适合自学和教学使用,包含可运行的代码和工程技能训练。
EVE - 无编码器视觉语言模型实现高效性能
EVEGithub开源项目微调无编码器视觉语言模型预训练
EVE项目开发了一种无编码器的视觉语言模型架构,通过高效训练策略和精选数据集实现了与现有编码器基础模型相当的性能。该模型支持任意纵横比图像输入,在多项基准测试中表现优异。EVE-7B和EVE-7B-HD两个版本在视觉语言任务中展现了强大能力,为跨模态纯解码器架构提供了高效实用的开发方法。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
CLIP-ViT-L-14-laion2B-s32B-b82K - CLIP-ViT-L-14模型实现高效零样本图像分类和检索
CLIPGithubHuggingfaceLAION-2B图像分类开源项目模型视觉语言模型零样本学习
CLIP-ViT-L-14-laion2B-s32B-b82K模型基于LAION-2B英语数据集训练,在ImageNet-1k上实现75.3%的零样本top-1准确率。它支持零样本图像分类和图文检索等任务,是研究零样本图像分类的重要工具。该模型在JUWELS Booster超级计算机上完成训练,为计算机视觉研究提供了新的可能性。
Florence-2-large-ft - 统一表示实现多种视觉任务的AI基础模型
Florence-2GithubHuggingface图像识别多任务学习开源项目模型自然语言处理计算机视觉
Florence-2是一款视觉基础模型,采用提示式方法处理多种视觉和视觉语言任务。该模型基于包含54亿标注的FLD-5B数据集进行多任务学习,可通过简单文本提示执行图像描述、目标检测和分割等任务。Florence-2采用序列到序列架构,在零样本和微调场景中表现优异,展现了较强的竞争力。
EVA - 推进大规模视觉表示学习的前沿
CLIPEVAGithub多模态学习开源项目自监督学习视觉表示
EVA是北京智源人工智能研究院开发的视觉表示学习模型系列。它包括多个子项目,如EVA-01和EVA-CLIP,致力于探索大规模掩码视觉表示学习的极限和改进CLIP训练技术。这些模型在主流平台上提供,为计算机视觉研究提供了有力支持。EVA项目涵盖基础模型、自监督学习和多模态学习等前沿领域。
convnextv2_base.fcmae_ft_in22k_in1k_384 - 高效图像识别与特征开发的开源解决方案
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2是一款基于全卷积掩码自编码器(FCMAE)预训练的图像分类模型,能够高效处理ImageNet-22k和ImageNet-1k数据集。模型拥有88.7M的参数和45.21 GMACs,适合精准的图像识别和特征开发。兼容timm库,支持图像分类、特征图提取和图像嵌入生成等应用场景。通过简单的Python代码即可调用该模型,提升开发效率。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号