Project Icon

vissl

自监督视觉学习框架 促进计算机视觉研究

VISSL是一个计算机视觉库,专注于自监督学习研究。它实现了最新的自监督方法,提供全面的基准测试,采用简便的配置系统和模块化设计,并支持大规模训练。VISSL致力于加快自监督任务的设计和评估过程,为研究人员提供实用且灵活的工具。

dino-vits16 - DINO训练的小型Vision Transformer模型及其应用
DINOGithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
dino-vits16是一个基于DINO方法训练的小型Vision Transformer模型。该模型在ImageNet-1k数据集上进行自监督预训练,能够有效学习图像特征表示。它采用16x16像素的图像块作为输入,可应用于多种视觉任务。dino-vits16展示了自监督学习在计算机视觉领域的潜力,为图像分类等下游任务奠定了基础。
moco - 基于动量对比的无监督视觉表示学习
GithubImageNetMoCoResNet-50对比学习开源项目无监督视觉表示学习
MoCo是一种创新的无监督视觉表示学习方法,利用动量对比在大规模未标注数据上进行预训练。该方法在ImageNet数据集上训练ResNet-50模型,无需标注即可学习出高质量的视觉特征。MoCo v2版本在原基础上进一步优化,线性分类准确率达67.5%。项目开源了PyTorch实现,支持分布式训练,并提供预训练权重。
3D-VisTA - 简化3D视觉和文本对齐的新型预训练模型
3D-VisTAGithub多模态融合开源项目自然语言处理计算机视觉预训练模型
3D-VisTA是一种新型预训练变换器模型,专注于3D视觉和文本对齐。该模型采用简洁统一的架构,无需复杂的任务特定设计,可轻松适应多种下游任务。通过在大规模ScanScribe数据集上预训练,3D-VisTA在视觉定位、密集字幕生成等3D视觉语言理解任务中达到了领先水平。此外,该模型还表现出优异的数据效率,即使在标注数据有限的情况下也能保持强劲性能。
veScale - 基于PyTorch的大规模语言模型训练框架
GithubLLM训练框架PyTorch分布式训练并行计算开源项目模型执行
veScale是一个基于PyTorch的大规模语言模型训练框架,专为简化LLM训练过程而设计。它支持零代码修改、单设备抽象和自动并行规划,实现了张量并行、序列并行和数据并行等多种策略。框架还提供自动检查点重分片和nD分布式时间线功能,大幅提升了训练效率。作为一个持续发展的项目,veScale计划在未来引入更多先进功能,为研究人员和开发者提供全面的LLM训练解决方案。
Vizzy - AI驱动的快速数据可视化平台
AI工具APIGitHubOpenAI公共项目数据可视化
Vizzy是一个基于大型语言模型(LLMs)的在线数据可视化工具。用户可上传多种格式的数据文件,系统自动生成多种类型的可视化图表,并提供实时预览功能。平台界面简洁,支持OpenAI API连接,可自定义图表样式,并提供公共项目库作为参考。Vizzy致力于简化数据可视化流程,适用于各行业数据分析需求,帮助用户以低成本高效率地探索和呈现数据。其卓越的性能和易用性使数据可视化过程变得轻松高效。
viser - Python 交互式 3D 可视化库 支持 Web 客户端和丰富 API
3D可视化GUI构建GithubPython库viser场景交互开源项目
viser 是一个 Python 交互式 3D 可视化库,提供丰富 API 用于 3D 图元可视化。它包含 GUI 构建组件,支持场景交互和相机控制。基于 Web 的客户端便于远程使用。viser 支持点云、高斯散射和 SMPLX 可视化。该项目借鉴多个开源工具,采用 React 等现代 Web 技术构建客户端。
owlvit-large-patch14 - 基于Vision Transformer的零样本目标检测模型
GithubHuggingfaceOWL-ViT多模态模型开源项目模型物体检测视觉变换器零样本学习
OWL-ViT模型采用CLIP和Vision Transformer架构,实现了零样本文本条件目标检测。它可以根据文本查询识别图像中的物体,无需预先定义类别。该模型在大规模图像-文本数据集上进行训练,并在COCO和OpenImages等数据集上微调。OWL-ViT为计算机视觉研究提供了新的可能性,尤其在零样本目标检测领域。
computer-vision-in-action - 计算机视觉实战指南:涵盖基础理论及前沿技术
CharmveGithubL0CVMaiwei AI Lab开源项目机器学习计算机视觉
本项目提供全面且前沿的计算机视觉学习资源,涵盖深度学习基础、神经网络模型及其优化方法。核心内容包括卷积神经网络、循环神经网络以及现代技术如Transformer、强化学习和迁移学习。通过实战项目和详细的代码实现,用户可以学习图像分类、目标检测、语义分割和3D重建等应用。此外,项目提供在线运行的notebook,简化本地调试过程。
awesome-contrastive-self-supervised-learning - 对比自监督学习论文和资源汇总
Github对比学习开源项目深度学习自监督学习表示学习视觉模型
该项目收录了对比自监督学习领域的重要论文和资源,覆盖从2017年至今的研究成果。内容包括综述、算法、应用等,按年份分类整理。研究人员可通过此项目快速了解该领域发展历程和最新动态,是深入研究对比学习的重要参考资料。
Visus - Visus智能知识库平台实现个性化文档问答服务
AI助手AI工具Visus数据安全知识管理自然语言处理
Visus是一个智能知识库平台,允许用户基于私有文档训练个性化的AI助手。该平台支持自然语言交互,提供即时问答服务,并能存储海量文档。Visus注重数据安全,采用AES 256加密和严格的权限控制,正在申请SOC 2合规认证。这一工具旨在提高个人和团队知识管理效率,使文档检索和信息获取变得更加便捷。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号