Project Icon

Phi-3-medium-4k-instruct-abliterated-v3

增强文本生成模型性能的正交化方法

采用正交化技术的Phi-3模型旨在减少拒绝响应,同时保持知识完整性。该方法通过权重调整消除拒绝特征,比传统微调更为精确高效。新版本Phi-3参考最新研究方法,减少错觉并提高模型稳定性。这一技术改进不仅是重要升级,也是未来深度学习模型优化的方向。

Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
phi-2-GGUF - 以多平台兼容性著称的高效GGUF格式模型
GPU加速GithubHuggingfacePhi 2下载和运行开源项目模型模型兼容性量化方法
探讨2023年8月由llama.cpp团队引入的微软Phi 2项目GGUF格式。页面包含详细的使用指南和应用案例,适合文本生成和推理。Phi 2具备跨平台兼容性和多种量化选项,支持GPU加速,是自然语言处理的良好选择。
Replete-LLM-V2.5-Qwen-14b-GGUF - Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述
ARM芯片GithubHuggingfaceRombos-LLM-V2.5-Qwen-14b开源项目性能比较模型模型优化量化
该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。
DoRA - 大型语言模型微调的权重分解低秩适应方法
DoRAGithub低秩适应大语言模型开源项目微调权重分解
DoRA是一种新型大型语言模型微调方法,通过将预训练权重分解为幅度和方向两个部分进行更新。与LoRA相比,DoRA在保持参数效率的同时提升了模型的学习能力和训练稳定性。研究表明,DoRA在常识推理、视觉指令调优和图像/视频-文本理解等多项下游任务中表现优于LoRA。该技术已集成到Hugging Face PEFT和Diffusers库中,可用于多种模型的微调。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
optimized-gpt2-1b - GPT-2架构优化模型 提供高效可扩展的自然语言处理功能
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡自然语言处理
optimized-gpt2-1b是一个基于GPT-2架构优化的大规模语言模型。该模型在保持GPT-2性能的基础上,通过架构和训练方法的优化提高了效率和可扩展性。它可应用于文本生成、摘要和问答等多种自然语言处理任务。模型支持直接使用或针对特定需求进行微调。项目提供了使用说明和评估结果,有助于研究人员和开发者更好地理解和应用这一语言模型。
pythia-1.4b-deduped-v0 - 开源语言模型套件助力可解释性研究
EleutherAIGithubHuggingfacePythia开源项目机器学习模型自然语言处理语言模型
Pythia-1.4B-deduped是EleutherAI推出的开源语言模型,旨在推动AI可解释性研究。该模型在去重后的Pile数据集上训练,提供143个均匀分布的检查点,便于研究人员分析模型训练过程。虽然不以下游任务性能为主要目标,Pythia-1.4B-deduped在多项评估中仍表现出色,与同规模模型相当或更优。模型采用Apache 2.0许可,可用于进一步研究、微调和部署。
Qwen2-72B-Instruct-GPTQ-Int4 - 提升多语言处理能力,支持超长文本输入
GithubHuggingfaceQwen2-72B-Instruct-GPTQ-Int4多语言功能开源项目模型生成能力语言模型长文本处理
Qwen2-72B-Instruct-GPTQ-Int4基于Transformer架构,支持多语言生成和理解,具备长达131,072个标记的处理能力。多专家模型设计增强了在语言生成、代码编写及数学推理方面的表现。提供详细的模型部署指导,利用YARN技术提升长文本处理性能。量化模型基准测试和速度对比数据可协助开发者优化深度学习应用。更多信息和更新请参阅相关博客及文档。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
Llama-3.2-3B-Instruct-bnb-4bit - Unsloth技术加速大型语言模型微调
GithubHuggingfaceLlama 3.2Unslothtransformers大语言模型开源项目微调模型
Llama-3.2-3B-Instruct-bnb-4bit项目利用Unsloth技术提高大型语言模型微调效率。该方法可将Llama 3.2、Gemma 2和Mistral等模型的微调速度提升2-5倍,同时降低70%内存占用。项目提供多个Google Colab笔记本,支持Llama-3.2、Gemma 2、Mistral等多种模型。这些笔记本操作简便,适合初学者使用,只需添加数据集并运行即可完成模型微调。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号