Project Icon

fastbook

fastai与PyTorch的深度学习教程

本项目提供涵盖fastai和PyTorch的深度学习教程,适合初学者与进阶用户。可通过Google Colab在线运行,无需本地配置Python环境。项目还包括MOOC课程及相关书籍,系统化帮助用户学习深度学习技术。

fastai - 一个为从业者提供快速提供在标准深度学习领域中提供最先进的高级组件,并提供可以混合和匹配的低级组件构建新方法的深度学习库
GPU优化GithubPyTorchfastai开源项目深度学习计算机视觉
fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。
fast.ai - 简化深度学习的开源教育平台
AI工具fast.ai人工智能数据科学机器学习深度学习
fast.ai提供免费在线课程和开源软件库,通过代码优先的实践教学,帮助各类人群快速掌握深度学习技术。该平台注重应用,让学习者能快速构建模型,同时致力于提高AI领域的多样性。
course-v3 - 第三版实用深度学习教程与配套notebooks
GithubPractical Deep Learningcourse-v3fastaifastbooknotebooks开源项目
第三版实用深度学习教程,提供程序员深度学习的实际应用指南。需使用fastai1与配套notebooks,不兼容最新的fastai。如需最新版本教程,请访问指定链接。
pytorch-book - PyTorch 1.8入门与高级应用指南
GithubPyTorch开源项目深度学习生成对抗网络神经网络自然语言处理
这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
Dive-into-DL-PyTorch - PyTorch实现与教程
项目将《动手学深度学习》原书的MXNet代码实现改为PyTorch,适合对深度学习感兴趣并希望使用PyTorch的用户。无需深度学习或机器学习背景,只需基础数学和编程知识。项目包含Jupyter Notebook代码和Markdown文档,通过Docsify部署,方便在线或本地浏览和运行。
Awesome-PyTorch-Chinese - PyTorch资源,教程、视频、实战项目和书籍推荐
GithubPyTorch书籍实战开源项目教程视频
详细介绍PyTorch资源,包括官方文档、教程、视频课程、NLP与CV实战项目及相关书籍,帮助各层次用户深入掌握PyTorch。
pytorch-handbook - 使用PyTorch进行深度学习开发的用户的系统化的入门指南
GithubPyTorch卷积神经网络开源项目循环神经网络深度学习神经网络
本开源书籍为使用PyTorch进行深度学习开发的用户提供系统化的入门指南。教程内容覆盖了从环境搭建到高级应用的各个方面,包括PyTorch基础、深度学习数学原理、神经网络、卷积神经网络、循环神经网络等,还包含实践案例与多GPU并行训练技巧。书籍持续更新,与PyTorch版本同步,适合所有深度学习研究者。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号