Project Icon

rb-libsvm

Ruby语言的LIBSVM机器学习库封装

rb-libsvm(当前版本3.24)是一个封装LIBSVM库的Ruby gem包,为Ruby开发者提供支持向量机(SVM)功能。它无需额外依赖,通过简洁API实现SVM模型的训练和预测。该项目适用于Ruby环境下的机器学习任务,可应用于数据分析和人工智能领域。rb-libsvm集成了LIBSVM核心功能,支持多类分类、回归和分布估计等功能,在文本分类等场景中表现出色。它是Ruby环境中进行高效机器学习的有力工具,为数据科学和人工智能应用提供了强大支持。

Gem Version

rb-libsvm -- Ruby language bindings for LIBSVM

This package provides Ruby bindings to the LIBSVM library. SVM is a machine learning and classification algorithm, and LIBSVM is a popular free implementation of it, written by Chih-Chung Chang and Chih-Jen Lin, of National Taiwan University, Taipei. See the book "Programming Collective Intelligence," among others, for a usage example.

There is a JRuby implementation of this gem named jrb-libsvm by Andreas Eger.

Note: There exist some other Ruby bindings for LIBSVM. One is named Ruby SVM, written by Rudi Cilibrasi. The other, more actively developed one is libsvm-ruby-swig by Tom Zeng, which is built using SWIG.

LIBSVM includes a number of command line tools for preprocessing training data and finding parameters. These tools are not included in this gem. You should install the original package if you need them.

It is helpful to consult the README of the LIBSVM package for reference when configuring the training parameters.

Currently this package includes libsvm version 3.24.

Dependencies

None. LIBSVM is bundled with the project. Just install and go!

Installation

For building this gem from source on OS X (which is the default packaging) you will need to have Xcode installed, and from within Xcode you need to install the command line tools. Those contain the compiler which is necessary for the native code, and similar tools.

To install the gem run this command

gem install rb-libsvm

Usage

This is a short example of how to use the gem.

require 'libsvm'

# This library is namespaced.
problem = Libsvm::Problem.new
parameter = Libsvm::SvmParameter.new

parameter.cache_size = 1 # in megabytes

parameter.eps = 0.001
parameter.c = 10

examples = [ [1,0,1], [-1,0,-1] ].map {|ary| Libsvm::Node.features(ary) }
labels = [1, -1]

problem.set_examples(labels, examples)

model = Libsvm::Model.train(problem, parameter)

pred = model.predict(Libsvm::Node.features(1, 1, 1))
puts "Example [1, 1, 1] - Predicted #{pred}"

If you want to rely on Bundler for loading dependencies in a project, (i.e. use Bundler.require or use an environment that relies on it, like Rails), then you will need to specify rb-libsvm in the Gemfile like this:

gem 'rb-libsvm', require: 'libsvm'

This is because the loadable name (libsvm) is different from the gem's name (rb-libsvm).

Release

The process to make a release of the gem package to rubygems.org has a number of steps.

  • manually change the version in lib/libsvm/version.rb
  • clean, build, and run tests successfully
  • update code and documentation
  • push
  • sign into https://rubygems.org/
  • save API token from https://rubygems.org/profile/edit and store in .gem/credentials by running gem signin
  • perform actual release: bundle exec rake release

Author

Written by C. Florian Ebeling.

Contributors

License

This software can be freely used under the terms of the MIT license, see file MIT-LICENSE.

This package includes the source of LIBSVM, which is free to use under the license in the file LIBSVM-LICENSE.

Posts about using SVMs with Ruby

https://www.practicalai.io/implementing-classification-using-a-svm-in-ruby/

http://neovintage.blogspot.com/2011/11/text-classification-using-support.html

http://www.igvita.com/2008/01/07/support-vector-machines-svm-in-ruby/

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号