Project Icon

reptile-pytorch

PyTorch实现的用于监督学习的OpenAI Reptile算法

PyTorch实现的OpenAI Reptile算法,专注于监督学习,目前支持在Omniglot数据集上运行,具备K-shot N-way采样、训练监控和中断恢复功能。欢迎对项目的贡献和反馈,未来计划支持Mini-Imagenet数据集、提升Meta-batch大小、添加训练曲线和Shell脚本下载功能。

pytracking - 基于PyTorch的开源视觉目标跟踪和视频对象分割框架
GithubPyTorch开源项目深度学习视觉目标跟踪视频目标分割计算机视觉
PyTracking是基于PyTorch的开源视觉目标跟踪和视频对象分割框架。它实现了多个先进的跟踪算法,如TaMOs、RTS和ToMP,并提供完整的训练代码和预训练模型。该框架包含用于实现和评估视觉跟踪器的库,涵盖常用数据集、性能分析脚本和通用构建模块。其LTR训练框架支持多种跟踪网络的训练,提供丰富的数据集和功能。
Dive-into-DL-PyTorch - PyTorch实现与教程
项目将《动手学深度学习》原书的MXNet代码实现改为PyTorch,适合对深度学习感兴趣并希望使用PyTorch的用户。无需深度学习或机器学习背景,只需基础数学和编程知识。项目包含Jupyter Notebook代码和Markdown文档,通过Docsify部署,方便在线或本地浏览和运行。
axolotl - 多功能AI模型微调工具
AI模型AxolotlGithub开源项目微调训练配置
Axolotl是一个功能丰富的AI模型微调工具,支持llama、pythia、falcon等多种Huggingface模型。它提供全微调、LoRA、QLoRA等训练方法,支持自定义配置和多种数据集格式。Axolotl集成了xformer、flash attention等技术,可在单GPU或多GPU环境运行,支持Docker部署,并可将结果记录到wandb或mlflow。该工具为AI模型训练提供了灵活高效的解决方案。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
RWKV_Pytorch - RWKV大语言模型的纯PyTorch推理框架
GithubPyTorchRWKV大语言模型开源开源项目推理框架
RWKV_Pytorch是一个基于纯PyTorch实现的RWKV大语言模型推理框架。该框架支持批量和并行推理,充分发挥RWKV模型性能。其代码结构清晰,便于阅读和二次开发。框架支持ONNX格式模型的导出和推理,提供本地部署选项。未来计划适配香橙派AI Pro开发板,以实现在昇腾生态上推理RWKV模型。当前版本仅兼容RWKV v6模型(x060版本)。
pytorch_geometric - 图形神经网络开发库
GithubPyTorch Geometric图神经网络开源项目数据处理机器学习深度学习
PyTorch Geometric是一个基于PyTorch的图形神经网络库,旨在简化结构化数据的建模与训练流程。支持小批量和大规模图的处理,并提供全面的GPU加速、数据管道处理以及常用基准数据集。这使得它成为机器学习研究者和初学者理想的选择。
FLASH-pytorch - FLASH 线性时间内提升Transformer效能的开源实现
FLASHGithubPyTorchTransformer开源项目注意力机制深度学习
FLASH-pytorch是一个开源项目,实现了一种高效的Transformer变体。该项目采用门控注意力单元(GAU)和分组线性注意力,在线性时间内提升模型性能。它提供简洁API,支持自回归和非自回归模式,并整合多种位置编码技术。这一工具使研究人员和开发者能够便捷地探索和应用Transformer的最新优化技术。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
simple_rl - 轻量级Python强化学习实验框架
GithubPython复现结果实验开源项目强化学习简单框架
simple_rl框架专注于简化强化学习实验流程和提高结果可复现性。它内置了网格世界、OpenAI Gym等MDP环境,实现了Q-learning和R-Max等经典算法。新增的实验复现功能方便研究者重现成果。该框架支持Python 2和3,为强化学习研究和教学提供了实用工具。
dreamerv3-torch - DreamerV3算法的PyTorch实现 跨领域强化学习新突破
DreamerV3Github世界模型人工智能开源项目强化学习深度学习
dreamerv3-torch是DreamerV3算法的PyTorch实现。该项目提供了详细的安装和使用说明,支持DMC、Atari、Crafter和Minecraft等多种基准测试环境。DreamerV3作为一种可扩展的强化学习算法,能在多个领域中以固定超参数实现优异性能。该实现参考了多个知名强化学习项目,为研究人员和开发者提供了实用的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号