Project Icon

llama-lora-fine-tuning

单GPU微调LLaMA模型的高效方法

本项目展示了在单个16G GPU上微调vicuna-7b模型的方法。通过采用LoRA、半精度模型和8位加载等技术,有效降低了内存需求。项目详细说明了环境配置、模型准备、语料处理和微调过程,并提供P100和A100的性能数据。这种方法使研究者和开发者能在有限硬件资源下进行大型语言模型的定制化训练。

LLaMA-Cult-and-More - 最新大模型参数、微调数据和硬件需求解析
AnthropicEfficient训练GithubMetaOpenAI多模态LLM开源项目
LLaMA-Cult-and-More项目详细介绍了最新大模型的参数数量、微调数据集与技术,并提供LLM对齐后训练的实用指南,包括数据集、基准数据集和高效训练库。从预训练模型到后训练模型,项目涵盖了许多有趣的内容,帮助您了解关键功能和最新进展。
lora - 使用低秩自适应技术进行快速稳定扩散模型微调
DreamboothGithubHuggingfaceLoRAPivotal TuningStable Diffusion开源项目
该项目使用低秩自适应技术进行快速稳定扩散模型微调,比dreambooth方法快两倍,支持inpainting,并且生成非常小的模型文件(1MB~6MB),便于共享和下载。兼容diffusers库,提供多向量核心调优反演功能,并实现更好的性能。项目集成了Huggingface Spaces,增加了LoRA合并、Resnet应用和转换脚本功能。通过仅微调模型的残差,该方法显著缩小模型大小,同时保持高保真度,适用于需要快速高效微调的用户。
Mistral-Nemo-Instruct-2407-bnb-4bit - 高效LLM微调框架提速2-5倍并减少70%内存使用
GithubHuggingfaceUnsloth加速训练大语言模型开源项目微调模型节省内存
该项目为Mistral、Gemma、Llama等大语言模型提供高效微调框架。利用Unsloth技术,训练速度提升2-5倍,内存使用减少70%。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b、Mistral 7b等模型训练。框架操作简单,适合初学者使用,支持将微调模型导出为GGUF、vLLM格式或上传至Hugging Face平台。
Llama3-Tutorial - Llama 3模型实践教程 从部署到微调评测
GithubLlama 3大模型开源项目微调评测部署
Llama 3教程项目提供了从本地部署到高效部署和能力评测的全面指导。包含六个课程,涵盖XTuner个性化助手训练、LLaVA图像理解、LMDeploy高效部署和OpenCompass模型评估等核心内容。该教程为开发者提供了实践Llama 3大语言模型的完整流程和关键技能培训。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
LLMtuner - 使用 LoRA、QLoRA 等最佳实践对 Llama、Whisper 和其他 LLM 进行微调
GithubLLMTunerLLM微调LlamaLoRAWhisper开源项目
LLMTuner 提供类 scikit-learn 接口,让用户便捷微调如 Llama、Whisper 等大型语言模型。通过 LoRA 和 QLoRA 等技术实现高效微调,内置推理功能和一键启动的交互式 UI,简化模型展示和共享。此外,LLMTuner 还支持未来在 AWS 和 GCP 等平台上的部署。欢迎加入 PromptsLab 社区,探索和讨论最新的开源模型调优技术。
TinyLlama-1.1B-intermediate-step-1195k-token-2.5T - TinyLlama项目中的1.1B模型实现高效计算
GithubHuggingfaceLLama 2TinyLlama优化开源项目模型模型参数预训练
TinyLlama通过创新方法,在2.5万亿tokens数据集上实现预训练,紧凑的1.1B参数设计提高了计算和内存效率,适用于多种开源项目。
LOMO - 大规模语言模型的低内存全参数微调技术
AdaLomoGithubLOMO优化器低内存优化大语言模型开源项目
LOMO和AdaLomo是为大规模语言模型训练设计的低内存优化算法。通过融合梯度计算和参数更新,这些技术显著减少内存使用,使单GPU设备能实现全参数微调。AdaLomo提供自适应学习率和分组更新归一化,在内存效率和性能上与AdamW相当。这些算法已集成至多个主流深度学习框架,为资源受限环境中的大模型训练提供高效方案。
Llama3-8B-1.58-100B-tokens-GGUF - Llama 3模型的GGUF格式优化版本
GithubHuggingfaceLlama3llama.cpp命令行界面开源项目推理模型模型转换
本项目提供Llama3-8B-1.58模型的GGUF格式版本,基于Meta-Llama-3-8B-Instruct模型转换而来。支持通过llama.cpp进行快速部署和推理,包括命令行界面和服务器模式。项目详细介绍了llama.cpp的安装、使用方法,以及从GitHub克隆和构建的步骤,方便开发者进行硬件优化和自定义配置。这一优化版本旨在提高模型的部署效率和推理性能。
mLoRA - 为大型语言模型提供高效多LoRA适配器构建
GithubLoRA适配器mLoRA大语言模型开源框架开源项目高效微调
mLoRA 是一个开源框架,旨在高效地对多个大型语言模型 (LLMs) 进行 LoRA 和其变体的微调。其主要功能包括同时微调多个 LoRA 适配器、共享基础模型、优化的流水线并行算法,并支持多种 LoRA 变体和偏好对齐算法。mLoRA 可在普通硬件上高效运行,支持多种模型和算法,有助于节省计算和内存资源。通过参考文档可了解如何快速部署和使用 mLoRA。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号