Project Icon

mediapipe-samples

机器学习应用开发基础步骤展示

MediaPipe-samples项目展示了创建机器学习应用的基本步骤。项目提供MediaPipe Solutions的低代码/无代码工具,如Tasks、Model Maker和Studio,用于构建跨平台ML解决方案。该仓库接受修复性贡献,但不接收新示例以保持项目简洁。开发者可在自有仓库中分享复杂示例和教程。

mlx-swift-examples - MLX Swift机器学习示例程序与开发工具集
GithubMLX SwiftiOSmacOS开源项目机器学习示例程序
MLX Swift示例项目包含多个机器学习应用实例,涵盖MNIST训练器、LLM评估器等iOS和macOS跨平台程序,以及线性模型训练、LLM文本生成等命令行工具。项目还提供MLXLLM和MLXMNIST库作为Swift Package,便于开发者在自有项目中集成和使用MLX Swift框架进行机器学习开发。
sample-apps - Vespa搜索和推荐系统示例应用集合
GithubVespa向量检索开源项目搜索引擎机器学习语义搜索
Sample-apps项目展示了Vespa的多种应用场景,包括基础推荐、语义搜索、检索增强生成(RAG)和多向量索引等。该项目通过电商搜索、新闻推荐和大规模图像检索等实例,展示了Vespa的实际应用能力。开发者可以参考album-recommendation、news和billion-scale-image-search等多个示例应用,快速掌握Vespa的基础和高级功能实现。
machine_learning_examples - 机器学习示例和教程的精选集合
GithubGoogle ColabTensorflow 2.0data_sciencedeep_learning_coursesmachine_learning_examples开源项目
本页面汇集了多种机器学习的实例和教程,涵盖自然语言处理、时间序列分析、金融工程和深度学习等领域。用户可以通过链接访问详细的课程,每个课程的代码都存放在相应的文件夹中,便于查找和学习。特别指出TensorFlow 2.0及以后的代码主要在Google Colab上,建议通过克隆而非分叉仓库来保持代码的最新状态。
TensorFlow-Examples - 探索TensorFlow的最佳实践与全面教程
GithubTensorFlow开源项目数据管理机器学习深度学习神经网络
TensorFlow-Examples提供针对TensorFlow 1和2的详尽教程,涵盖从基础操作到高级模型如深度神经网络,适合初学者通过详细的笔记本和代码解析深入学习,同时介绍最新的API使用实践,如layers、estimator和dataset。
Android-TensorFlow-Lite-Example - 在Android应用中集成TensorFlow Lite的介绍,用于通过相机图像进行对象检测
AndroidGithubTensorFlow Lite对象检测应用程序开源项目机器学习
该项目展示了如何在Android应用中集成TensorFlow Lite,用于通过相机图像进行对象检测。这是一个适合学习和实际应用的机器学习示例项目。
elevenlabs-examples - ElevenLabs语音合成API教程与开发示例集
APIElevenLabsGithub开发者文档开源项目教程贡献
elevenlabs-examples项目提供ElevenLabs语音合成API的教程和示例代码。项目包含API使用指南,便于开发者理解和应用ElevenLabs功能。该开源项目支持社区贡献,并使用预提交钩子保证代码质量。这是一个面向语音合成开发者的实用资源。
ai_projects - 多领域机器学习项目开源仓库
AI项目GitHubGithubMiguel Fierro开源项目机器学习深度学习
ai_projects是一个涵盖多个机器学习领域的开源项目仓库。内容包括CNN、转移学习、推荐系统和自然语言处理等主题。每个项目都配有Jupyter笔记本和相关博客文章,为开发者和研究者提供实践资源。仓库定期更新,展示AI技术在实际应用中的最新进展。
java-docs-samples - Google Cloud Platform Java示例代码库概览
GithubGoogle Cloud PlatformJava开发环境开源项目示例代码身份验证
该代码库收集了展示Google Cloud Platform各项功能的Java示例代码,涵盖多个Java版本如Java 11和Java 17。库中包含详细的环境设置指南和身份验证流程说明,方便开发者快速上手。通过这些实例,开发人员可以学习如何在项目中整合Google Cloud服务,提高云应用开发效率。
VideoPipe - 跨平台的视频分析和结构化解决方案
GithubVideoPipe开源项目深度学习行为分析视频分析视频结构化
VideoPipe 是一个用 C++ 编写的开源视频分析和结构化框架,依赖少且易于上手。适用于视频结构化、图片搜索、人脸识别、交通和安防领域的行为分析。支持多种视频流协议和解码方式,集成深度学习和传统图像算法,具备目标检测、图像分类、特征提取等功能。插件化设计允许根据需求灵活组合,适用于多种平台,性能优良,广泛适用于各类应用场景。
studio-lab-examples - 使用Amazon SageMaker Studio Lab的AI/ML学习示例
AI/MLAmazon SageMakerGithubJupyter notebooksSageMaker Studio Lab开源项目数据科学
本页面展示了如何使用Amazon SageMaker Studio Lab构建AI/ML学习环境的Jupyter笔记本示例,适用于个人数据科学家的ML学习之旅。包含计算机视觉、自然语言处理、地理空间数据科学和生成深度学习等领域的示例,以及详细的设置指南和AWS资源的连接方法。用户可以无需账户阅读或运行笔记本,并通过GitHub分享项目,是成为AI/ML实践者的有用参考资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号