Project Icon

optax

JAX生态系统中的高效梯度处理与优化框架

Optax是JAX生态系统中的梯度处理和优化框架。它提供了经过严格测试的高效核心组件,支持研究人员灵活组合低级模块以构建自定义优化器。该库强调模块化设计,重视代码可读性和结构化,便于匹配标准优化方程。Optax实现了多种主流优化算法和损失函数,为机器学习研究和快速原型开发提供了有力支持。

nanodl - 设计与训练变压器模型的Jax库
GithubJaxNanoDLtransformer模型分布式训练开源项目深度学习
这是一个基于Jax的库,旨在简化变压器模型的开发和训练,特别适合资源有限的环境。支持多种模型如Gemma、GPT3、T5和Whisper,涵盖自然语言处理和计算机视觉任务。提供灵活的模块和层,包括Jax/Flax中未提供的RoPE、GQA、MQA和Swin注意力机制,支持多GPU/TPU的数据并行训练,简化数据处理。该库还包含加速的经典机器学习模型,帮助用户以最小的代码重写快速实现模型开发和训练。
optimum - 提升模型在不同硬件上的训练和运行效率的一系列优化工具
GithubHugging Face OptimumONNX RuntimeOpenVINOTransformer开源项目训练模型
Optimum扩展了Transformers和Diffusers,提供了一系列优化工具,提升模型在不同硬件上的训练和运行效率。支持的硬件平台包括ONNX Runtime、Intel Neural Compressor、OpenVINO、NVIDIA TensorRT-LLM、AMD Instinct GPUs、AWS Trainium & Inferentia、Habana Gaudi处理器和FuriosaAI。Optimum支持多种优化技术,如图优化、动态量化、静态量化和量化感知训练,配有详尽的文档和示例代码,帮助用户导出和运行优化后的模型。
opt-1.3b - Meta AI开发的开源预训练Transformer语言模型系列
GithubHuggingfaceOPT人工智能开源项目模型自然语言处理语言模型预训练模型
OPT是Meta AI开发的开源预训练Transformer语言模型系列,包含125M至175B参数的多个版本。采用先进数据收集和训练方法,性能可媲美GPT-3。该项目旨在推动大规模语言模型的可复现研究,让更多研究者参与探讨其影响。OPT主要应用于文本生成和下游任务微调,但仍存在偏见等局限性。
EasyDeL - 多模型训练优化框架
EasyDeLFlaxGithubJAX开源项目机器学习模型训练
EasyDeL是一个开源框架,用于通过Jax/Flax优化机器学习模型的训练,特别适合在TPU/GPU上进行大规模部署。它支持多种模型架构和量化方法,包括Transformers、Mamba等,并提供高级训练器和API引擎。EasyDeL的架构完全可定制和透明,允许用户修改每个组件,并促进实验和社区驱动的开发。不论是前沿研究还是生产系统构建,EasyDeL都提供灵活强大的工具以满足不同需求。最新更新包括性能优化、KV缓存改进和新模型支持。
opytimizer - 基于自然启发的Python优化库 简化元启发式算法开发
GithubOpytimizerPython优化器元启发式优化开源项目搜索空间自然启发算法
Opytimizer是一个基于自然启发的Python优化库,实现了多种元启发式算法。它允许用户创建自定义优化器、设计优化任务并组合不同策略。该库专注于最小化问题,提供丰富示例和主流机器学习框架集成。Opytimizer可简化计算实验和参数调优,适合优化算法研究和应用开发。
scenic - 多模态视觉智能研究框架
GithubJAXScenicTransformer开源项目深度学习计算机视觉
Scenic是一个基于JAX的开源视觉智能研究框架,聚焦注意力机制模型。它提供轻量级共享库和完整项目实现,支持分类、分割、检测等任务,可处理图像、视频、音频等多模态数据。Scenic内置多个前沿模型和基线,有助于快速原型设计和大规模实验。
jumanji - JAX驱动的多样化强化学习环境套件 加速研究与应用
GithubJAXJumanji开源项目强化学习环境套件
Jumanji是一个基于JAX的强化学习环境套件,提供22个可扩展环境。通过硬件加速,它支持快速迭代和大规模实验。简洁API、丰富环境、主流框架兼容性和示例代码使强化学习研究更易开展,同时促进研究成果向工业应用转化。
torchquad - 基于GPU加速的开源数值积分框架
GPUGithubPyTorchtorchquad开源项目数值积分机器学习
torchquad是一个开源的高性能数值积分框架,支持PyTorch、JAX和Tensorflow等多个后端。该框架针对GPU进行了优化,能有效处理高维积分问题,并在GPU上展现出优异的扩展性。torchquad提供多种积分方法,支持自动微分,适用于机器学习和科学计算等领域。其简洁的API设计使研究人员和开发者能够高效地完成复杂的数值积分任务。
opt-2.7b - Meta AI开发的开放预训练Transformer语言模型
GithubHuggingfaceOPT人工智能开源项目文本生成模型自然语言处理预训练语言模型
OPT是Meta AI开发的开放预训练Transformer语言模型系列,参数规模125M至175B。采用先进数据收集和训练方法,性能与GPT-3相当。旨在促进大规模语言模型的可重复研究,扩大研究群体。主要基于英语语料预训练,使用因果语言建模,适用于文本生成和下游任务微调。OPT开放了完整模型访问权限,有助于研究大语言模型的工作原理、影响及相关挑战。
trax - 代码清晰、高速执行的深度学习库
GithubGoogle BrainReformerTransformerTrax开源项目深度学习
Trax是一个由Google Brain团队维护的端到端深度学习库,专注于清晰代码和高速执行。它提供预训练的Transformer模型和丰富的API文档,支持用户创建和训练自定义模型,并与TensorFlow数据集无缝集成。Trax兼容CPUs、GPUs和TPUs,用户可以通过Python脚本、notebooks和命令行界面轻松使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号