Project Icon

tf2jax

实验性TensorFlow到JAX函数转换库

tf2jax是一个实验性库,用于将TensorFlow函数和计算图转换为JAX函数。它支持SavedModel和TensorFlow Hub格式,使现有TensorFlow模型能够在JAX环境中重用。该库提供透明的转换过程,便于调试和分析。tf2jax支持自定义梯度和随机性处理,并提供灵活的配置选项。尽管存在一些限制,tf2jax为JAX用户提供了一种集成TensorFlow功能的有效方法。

optax - JAX生态系统中的高效梯度处理与优化框架
GithubJAXOptax优化器开源项目梯度处理深度学习
Optax是JAX生态系统中的梯度处理和优化框架。它提供了经过严格测试的高效核心组件,支持研究人员灵活组合低级模块以构建自定义优化器。该库强调模块化设计,重视代码可读性和结构化,便于匹配标准优化方程。Optax实现了多种主流优化算法和损失函数,为机器学习研究和快速原型开发提供了有力支持。
jaxlie - JAX Lie群库为计算机视觉和机器人应用提供刚体变换
GithubJAXLie群jaxlie开源项目机器人学计算机视觉
jaxlie是一个基于JAX的Lie群实现库,专注于计算机视觉和机器人应用中的刚体变换。它实现了SO2、SE2、SO3和SE3等常用Lie群,支持自动微分、优化和JAX函数变换。该库提供前向和反向模式AD、流形优化、广播和序列化等功能,为开发者提供刚体变换的高效工具。
dm-haiku - JAX神经网络构建的简洁解决方案
DeepMindGithubHaikuJAX开源项目神经网络谷歌
Haiku是一个为JAX设计的简洁神经网络库,具备面向对象编程模型和纯函数转换功能。由Sonnet的开发者创建,Haiku能简化模型参数和状态管理,并与其他JAX库无缝集成。虽然Google DeepMind建议新项目使用Flax,Haiku仍将在维护模式下持续支持,专注于修复bug和兼容性更新。
whisper-jax - 速度提升70倍的Whisper JAX音频转录与翻译解决方案
GithubWhisper JAX并行处理开源项目性能模型音频转录
Whisper JAX是基于Hugging Face Transformers实现的音频转录与翻译模型,通过JAX代码优化实现70倍速度提升,兼容CPU、GPU和TPU。模型能在Hugging Face Hub演示,并提供详细的安装、使用和高级配置指南,助力开发者在多种环境下高效部署。
equinox - 强大且易用的JAX兼容神经网络库
EquinoxGithubJAXPyTree开源项目神经网络转换API
Equinox是一款专为JAX设计的神经网络库,拥有类似PyTorch的语法。该库支持过滤API和PyTree操作,并兼容JAX及其生态系统中的所有工具。对于新手用户,推荐使用MNIST卷积神经网络示例,简化模型构建过程。Equinox还提供运行时错误处理等高级功能。
tensorflow-onnx - 将TensorFlow(包括tf-1.x和tf-2.x)、Keras、TensorFlow.js和TFLite模型转换为ONNX格式的工具
GithubKerasONNXPythonTensorFlowtf2onnx开源项目
该工具支持将TensorFlow(包括tf-1.x和tf-2.x)、Keras、TensorFlow.js和TFLite模型转换为ONNX格式,支持命令行和Python API操作。兼容Windows和Linux操作系统,支持Python 3.7至3.10,以及多种ONNX opset(从opset 14至opset 18)和TensorFlow版本。提供详细的安装步骤、转换指南和常见问题解决方案,全面支持saved model、checkpoint和graphdef等多种模型格式。
diffrax - JAX 自动微分与 GPU 支持的数值微分方程解析工具
CDEDiffraxGithubJAXODESDE开源项目
Diffrax 是基于 JAX 的数值微分方程解析库,适用于常微分方程、随机微分方程和受控微分方程的求解。其特点包括多种解析器选择(如 Tsit5、Dopri8、辛解析器、隐式解析器)、使用 PyTree 作为状态存储、支持稠密解和多种反向传播方法,并支持神经微分方程。兼容 Python 3.9+、JAX 0.4.13+ 和 Equinox 0.10.11+。
onnx2tf - ONNX文件转换工具,支持TensorFlow、TFLite和Keras格式
GithubKerasONNXTensorFlowonnx2tf开源项目模型转换
onnx2tf工具解决了在onnx-tensorflow中大规模转置推测的问题,支持将ONNX文件从NCHW转换为TensorFlow、TFLite和Keras的NHWC格式。工具每日进行优化和修复,如遇问题建议尝试旧版本或等待最新更新。该工具兼容PyTorch生成的ONNX模型,支持多种层类型并可与TensorFlow/Keras/TFLite无缝集成。详细的环境配置和使用指南适用于Linux和Windows。
gymnax - JAX驱动的高效强化学习环境集合
GithubJAXgymnax加速计算开源项目强化学习环境仿真
gymnax是基于JAX构建的强化学习环境库,充分利用JAX的即时编译和向量化功能,显著提升了传统gym API的性能。该库涵盖经典控制、bsuite和MinAtar等多种环境,支持精确控制环境参数。通过在加速器上并行处理环境和策略,gymnax实现了高效的强化学习实验,尤其适合大规模并行和元强化学习研究。
learned_optimization - 基于JAX的元学习优化器研究框架
GithubJAXlearned_optimization优化器元学习开源项目机器学习
learned_optimization是一个研究代码库,主要用于学习型优化器的训练、设计、评估和应用。该项目实现了多种优化器和训练算法,包括手工设计的优化器、学习型优化器、元训练任务以及ES、PES和截断反向传播等外部训练方法。项目提供了详细的文档和教程,包括Colab笔记本,方便用户快速入门。learned_optimization适用于元学习和动态系统训练的研究,为相关领域提供了功能丰富的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号