Project Icon

owlv2-large-patch14

开源零样本对象检测模型,支持多文本查询

OWLv2模型是一种零样文本感知对象检测模型,使用CLIP作为多模态骨干,通过结合视觉和文本特征实现开词汇检测。模型去除了视觉模型的最终token池化层,并附加分类和框头,能够处理多文本查询,扩展了图像识别的应用潜力。研究者通过重新训练和微调CLIP,提高了其在公开检测数据集上的性能,有助于探讨计算机视觉模型的鲁棒性。

Llama-3.1-Unhinged-Vision-8B-GGUF - 新的多模态内容处理AI模型
GithubHuggingfaceLM StudioMeta Llama 3.1上下文多模态开源项目模型
此项目结合了Meta Llama 3.1 8B和mmprojector模型,具备128K上下文能力,可以在对话中准确区分多幅图像。这一模型已在LM Studio中应用,为复杂视觉数据处理提供了支持。
Otter - 基于MIMIC-IT数据集和OpenFlamingo的多模态模型
GithubMIMIC-ITOtter多模态开源项目指令微调视觉语言处理
该项目结合了OpenFlamingo模型和MIMIC-IT数据集进行多模态指令调优,拥有280万条指令-响应对,支持图像和视频内容的精确理解与互动。该项目还包括OtterHD模型,提升高分辨率视觉输入的细粒度解释,并推出MagnifierBench评估基准测试模型的微小物体识别能力。公开的代码可用于训练和预训练,并支持GPT4V的评估和Flamingo架构的多任务处理。
CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
WinClip - 先进的零样本和少样本异常检测算法
GithubWinCLIP少样本学习开源项目异常检测计算机视觉零样本学习
WinCLIP是计算机视觉领域的创新零样本和少样本异常检测算法,专注于异常分类和异常分割。该方法在MVTec-AD和VisA数据集上表现出色,在图像级和像素级异常检测任务中均展现优异性能。项目提供完整实现代码,包含环境配置、数据集准备和结果复现指南,为研究人员和开发者提供重要参考,推动了异常检测技术的发展。
yolov10 - 实现实时端到端目标检测新突破
GithubYOLOv10人工智能实时检测开源项目目标检测端到端
YOLOv10是新一代实时端到端目标检测模型,通过创新的无NMS训练策略和全面的效率-准确度优化设计,在推理速度和计算效率方面实现显著提升。COCO数据集实验结果表明,YOLOv10在不同模型规模下均达到了业界领先的性能和效率水平,为实时目标检测领域带来新的发展方向。
Llama-2-13b-hf - Meta开源的130亿参数语言模型 适用于多种NLP任务
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama-2-13b-hf是Meta开发的大规模语言模型,拥有130亿参数。该模型在2万亿tokens的公开数据上预训练,采用优化的Transformer架构。它支持对话、问答、文本生成等多种NLP任务。与Llama 1相比,Llama 2在代码、常识推理、世界知识等基准测试中表现更佳。此模型开源可用于商业和研究,为AI应用开发奠定了基础。
Binoculars - 无需训练的AI文本检测工具
AI生成文本检测BinocularsGithub开源项目语言模型零样本领域无关
Binoculars是一款无需训练数据的AI文本检测工具,利用语言模型预训练数据集重叠原理识别生成内容。提供Python接口和在线演示,支持零样本检测,目前主要适用于英语文本。该项目为AI文本识别领域引入了新的解决思路。Binoculars适用于学术界、新闻媒体、内容平台等需要识别AI生成文本的场景,有助于维护信息真实性和原创性。
YOLOv6 - 高性能目标检测框架支持多场景应用
GithubYOLOv6开源项目模型训练深度学习目标检测计算机视觉
YOLOv6是一款高效的目标检测框架,提供从轻量级到大型的多种模型选择。它在速度和精度上取得平衡,支持量化和移动端部署,适用于各种实时检测场景。最新版本还引入了分割功能,扩展了应用范围。YOLOv6不仅适用于工业领域,还可广泛应用于安防、交通等多个领域。
vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
MiniGPT-4 - 视觉语言多任务学习的统一接口
GithubMiniGPT-v2图像理解多任务学习大型语言模型开源项目视觉语言模型
MiniGPT-4是一个视觉语言理解项目,整合了Llama 2和Vicuna模型以增强多模态能力。它支持图像描述、视觉问答和多任务学习,能够处理复杂的视觉理解任务。项目的开源性和灵活架构为研究人员和开发者提供了探索视觉语言AI的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号