Project Icon

qkeras

Keras 的量化扩展工具,通过替换部分 Keras 层,能够快速创建量化版深度学习模型

QKeras 是一个针对 Keras 的量化扩展工具,通过替换部分 Keras 层,能够快速创建量化版深度学习模型。项目设计遵循用户友好、模块化和易扩展的原则,包括 QDense 和 QConv2D 等多种量化层。QTools 用于辅助硬件实现和能耗估算,AutoQKeras 可以自动进行模型量化和重新平衡。此项目提供简单易用的界面,适用于快速原型设计、前沿研究和生产环境。

awesome-model-quantization - 全面的模型量化研究资源
Awesome Model QuantizationBiBenchEfficient_AIGC_RepoGithubMQBenchSurvey of Quantization开源项目
此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。
optimum-quanto - PyTorch模型量化框架 提升性能和效率
GithubOptimum QuantoPyTorch开源项目机器学习模型优化量化
Optimum Quanto是专为Optimum设计的PyTorch量化框架。它支持eager模式、多设备部署,自动插入量化/反量化存根和操作,实现从浮点到动态/静态量化模型的无缝转换。支持多种精度的权重和激活量化,有效提升模型性能和内存效率。该框架为Hugging Face和原生PyTorch模型提供简便的量化流程。
q-diffusion - 扩散模型的创新量化方法
GithubQ-Diffusion图像生成开源项目扩散模型深度学习量化
Q-Diffusion是一种针对扩散模型的后训练量化方法。它能将无条件扩散模型压缩至4位精度,同时保持接近原模型的性能。该方法通过时间步感知校准和分离捷径量化技术解决了扩散模型量化的主要难题。Q-Diffusion不仅适用于无条件图像生成,还可用于文本引导的图像生成,首次实现了4位权重下的高质量生成效果。这一技术为扩散模型的高效实现开辟了新途径。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
OmniQuant - 简便高效的大型语言模型量化技术
GithubLLaMAOmniQuant大语言模型开源项目量化高效QAT
OmniQuant是一种高效的量化技术,支持多种大型语言模型(LLM)的权重和激活量化,包括LLaMa和OPT等。其实现了4位及更低精度的权重量化,并通过MLC-LLM优化在多种硬件设备上的推理性能和内存占用。此外,项目还支持Mixtral和Falcon模型的压缩应用,大幅降低内存需求,提高运行效率。
qwen2.5-7b-ins-v3-GGUF - 量化优化AI模型的多样化选择指南
GithubHuggingfaceQwen2.5-7b-ins-v3quantization参数嵌入权重开源项目模型
该项目利用llama.cpp的b3901版本和imatrix选项对AI模型进行量化优化,支持各种硬件的量化格式下载。在LM Studio中运行这些模型,可通过缩小文件大小实现更高效的部署。K-quant格式在低资源环境中表现突出,而I-quants则在某些情况下显示出其新方法的优越性能,尤其建议ARM芯片用户选择Q4_0_X_X以获取更快速的响应。
autokeras - 机器学习自动化工具,简化图像分类任务
AutoKerasAutoMLGithubPython开源项目机器学习深度学习
AutoKeras是由德州农工大学DATA实验室开发的开源项目,旨在简化机器学习流程。通过Keras的AutoML系统,用户能够轻松完成图像分类等任务。支持Python 3.7及以上版本和TensorFlow 2.8.0及以上版本,安装方便,只需使用pip命令。提供详细的官方教程和相关书籍资源,社区鼓励贡献和参与。
qlib - 开源AI量化投资平台
GithubQlib人工智能开源项目机器学习模型量化投资
Qlib是一个开源AI量化投资平台,利用AI技术赋能金融研究和价值创造。支持监督学习、市场动态建模和强化学习等多种机器学习模式,覆盖量化投资的全部流程,如alpha寻求、风险管理、投资组合构建及订单执行。平台不断更新,引入最新量化研究成果和论文。
Deep-RL-Keras - 模块化实现深度强化学习算法,支持A2C、A3C、DDPG、DDQN
Actor-Critic算法GithubKeras优化算法开源项目深度Q学习深度增强学习
本项目在Keras框架下实现了多种常用的深度强化学习算法模块化,包括A2C、A3C、DDPG、DDQN等。用户可以通过命令行参数运行不同的RL算法,并在OpenAI Gym环境中进行训练。项目支持模型可视化和Tensorboard监控,提供详细的算法说明和使用案例,帮助用户理解和应用这些技术。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号