Project Icon

gmflow

利用全球匹配提高光流估计的准确性与效率

GMFlow将光流重新定义为全球匹配问题,简化了光流估计流程。它提供灵活的模块化设计,可以轻松构建定制模型,并在高端GPU上显著加速。该项目在Sintel基准测试中表现出高准确性和效率,预训练模型适用于FlyingChairs、FlyingThings3D和KITTI等数据集。新更新扩展了GMFlow至立体和深度任务,并提供更多速度和准确性的选择。

glomap - 全局结构运动重建的高效解决方案
COLMAPGLOMAPGithub三维重建开源项目结构运动计算机视觉
GLOMAP是一个基于图像的通用全局结构运动重建管线,与COLMAP相比,它提供了更高效和可扩展的重建过程。GLOMAP以COLMAP数据库为输入,输出COLMAP稀疏重建结果,重建速度通常快1-2个数量级,同时保持或超越原有重建质量。该项目支持从数据库或图像开始的端到端重建,并提供重建结果优化指南。
InstaFlow - 基于Rectified Flow的单步高质量图像生成技术
GithubInstaFlow人工智能图像生成开源项目文本生成图像深度学习
InstaFlow是一种基于Rectified Flow技术的单步图像生成器。该技术能生成接近Stable Diffusion质量的图像,同时大幅降低计算资源需求。InstaFlow通过直接将噪声映射到图像,避免了扩散模型的多步采样过程,将推理时间缩短至约0.1秒,比Stable Diffusion提高了约90%的效率。此外,InstaFlow还具有高质量输出和简单高效的训练过程等特点。
conditional-flow-matching - 连续正规化流模型的高效训练库
Flow MatchingGithubPyTorchTorchCFM开源项目生成模型连续正规化流
TorchCFM是一个专注于条件流匹配(CFM)方法的开源库,用于高效训练连续正规化流(CNF)模型。该库提供了多种CFM变体的实现,包括OT-CFM和[SF]2M,可用于图像生成、单细胞动力学和表格数据等任务。TorchCFM旨在帮助研究人员更便捷地使用和扩展这些先进的生成模型技术,缩小CNF与扩散模型之间的性能差距。
awesome-flow-matching - 流匹配与随机插值技术推动生成模型创新
Flow MatchingGithub开源项目插值概率流生成模型随机插值
awesome-flow-matching项目收集了流匹配和随机插值领域的前沿研究成果,涵盖理论基础和实际应用。项目包含Flow Matching、Stochastic Interpolants等创新技术,为研究人员和开发者提供全面资源,有助于深入理解先进生成模型方法,推动人工智能领域技术进步。
LMFlow - 开源大型机器学习模型微调工具箱
GithubLMFlowfinetuning优化开源项目性能模型
LMFlow为大型机器学习模型微调提供一个可扩展、便捷且高效的开源工具箱,支持多种优化功能,如自定义优化器训练、LISA算法等,已广泛应用于机器学习领域。
PhiFlow - 注重物理模拟与机器学习的开源仿真工具
GPU执行GithubPhiFlowPython开源项目机器学习模拟工具包
PhiFlow 是一款开源仿真工具包,专为优化和机器学习应用设计。它主要用 Python 编写,与 NumPy、PyTorch、Jax 和 TensorFlow 深度集成,利用这些框架的自动微分功能,简化涉及学习模型和物理仿真的可微函数构建。PhiFlow 特别适用于流体现象的 PDE 操作,通过联网操作支持实时可视化和交互控制,并支持 GPU 执行,为用户提供简洁、灵活且可扩展的编码体验。
flowframes - 视频插值工具,支持多种AI模型
DAIN NCNNFLAVR PytorchFlowframesGithubRIFE NCNN开源项目视频插帧
Flowframes是一个Windows视频插值工具,兼容RIFE(Pytorch & NCNN)、DAIN(NCNN)和FLAVR(Pytorch)多种AI实现。作为开源捐赠软件,用户可在itch.io免费下载旧版本或通过Patreon获取最新测试版本。无需复杂配置,支持自动下载依赖。配备Nvidia GPU的用户建议使用CUDA实现以优化性能。
CVPR2023-DMVFN - 动态多尺度体素流网络在视频预测领域的应用
CVPR2023GithubSOTA模型动态多尺度体素流网络开源项目数据集视频预测
本项目介绍了一种在视频预测领域的新模型——动态多尺度体素流网络。该模型由CVPR2023收录并成为亮点,通过对Cityscapes、KITTI及DAVIS等多个数据集的训练和测试,展示了其在视频预测中的表现。项目页面包括详细的安装、数据准备、训练和测试步骤,并提供丰富的可视化结果和资源链接,支持预训练模型的下载以便实际应用。
vggsfm - 深度学习驱动的结构运动恢复技术
GithubVGGSfM三维重建开源项目深度学习结构运动计算机视觉
VGGSfM是一种结合视觉几何原理和深度学习的结构运动恢复(SfM)技术。该开源项目提供Python包,支持3D重建、相机姿态估计和稠密深度图生成。VGGSfM在CVPR24 IMC挑战赛相机姿态估计中获得第一名。它支持多种特征点提取方法,并提供灵活的可视化选项,方便研究人员和开发者进行3D重建实验和应用开发。
gtsfm - 高性能并行结构运动恢复管线GTSfM
3D重建GTSAMGTSfMGithub并行计算开源项目结构运动恢复
GTSfM是一个基于GTSAM的开源结构运动恢复(SfM)管线,专为并行计算设计。它利用Dask实现分布式处理,集成了SuperPoint和SuperGlue等先进算法。GTSfM提供Python接口,无需编译即可使用。该项目支持多种场景重建任务,可与Nerfstudio等工具集成,为计算机视觉领域提供了灵活高效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号