Project Icon

InceptionTime

先进的时间序列分类深度学习模型

InceptionTime是一个基于Inception模块架构的时间序列分类深度学习模型。该项目在85个UCR/UEA数据集上展现出优秀的分类性能,并提供了完整的模型实现代码、实验复现指南和详细结果。研究显示,InceptionTime在分类准确率和训练效率方面都具有显著优势,为时间序列分类研究提供了有力的基准。

chronos-t5-base - T5架构驱动的时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测机器学习模型预训练模型
Chronos-T5-Base是一款基于T5架构的时间序列预测基础模型,具有2亿参数规模。该模型将时间序列转换为token序列,通过交叉熵损失训练,能够生成多样化的概率性预测。Chronos-T5-Base在大量公开时间序列数据和合成数据上进行了预训练,适用于广泛的时间序列预测场景。研究人员和开发者可以通过Python接口轻松调用该模型,实现高效的时间序列分析和预测。
chronos-t5-tiny - 轻量级预训练时间序列预测模型
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Tiny是基于T5架构的轻量级预训练时间序列预测模型,拥有800万参数。它将时间序列转换为token序列进行训练,可生成概率性预测。该模型在大量公开和合成时间序列数据上训练,能处理多种预测任务,适合快速部署和推理。作为Chronos系列的一员,它为时间序列分析提供了高效的解决方案。
uni2ts - 时间序列预测Transformer模型的统一训练框架
GithubPyTorchTransformerUni2TS开源项目时间序列预测预训练模型
Uni2TS是一个基于PyTorch的开源库,专门用于时间序列Transformer的研究和应用。它提供了统一的大规模预训练解决方案,支持微调、推理和评估。该库集成了零样本预测、自定义数据集处理和全面评估功能,并提供简化的命令行界面。Uni2TS旨在推动时间序列预测领域的进展,适用于研究和实际应用场景。
chronos-t5-mini - 基于T5架构的轻量级时间序列预测模型
Chronos-T5GithubHuggingface基础模型开源项目时间序列预测概率预测模型预训练模型
Chronos-T5-Mini是一款基于T5架构的预训练时间序列预测模型,拥有2000万参数。该模型将时间序列转换为token序列进行训练,可生成概率性预测。Chronos-T5-Mini在大量公开时间序列数据和合成数据上训练,适用于多种时间序列预测任务。通过Chronos Pipeline,研究人员和开发者可以便捷地使用该模型进行推理,获得精确的预测结果。
timesformer-base-finetuned-k400 - TimeSformer视频分类模型的Kinetics-400数据集实现
GithubHuggingfaceKinetics-400TimeSformer开源项目机器学习模型视频分类视频理解
TimeSformer是一个基于空间-时间注意力机制的视频分类模型,在Kinetics-400数据集上完成微调。该模型支持400类视频标签分类,由Facebook Research开发并在Hugging Face平台开源。模型采用transformer架构处理视频序列,可通过Python接口实现快速部署和预测。
functime - 高性能时间序列机器学习Python库
GithubPolarsPython库全局预测开源项目时间序列机器学习特征提取
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。
chronos-forecasting - 基于语言模型架构的预训练时间序列预测工具
AutoGluonChronosGithub开源项目时间序列语言模型预训练
Chronos是一款基于语言模型架构的预训练时间序列预测工具。它通过量化处理将时间序列转换为标记序列,并使用大规模的公开和合成数据进行训练。Chronos模型在零样本场景中表现优异,提供从预测到嵌入提取的完整解决方案。通过AutoGluon,用户可轻松进行模型集成和云端部署,提升预测性能和应用的灵活性。
Transformers_And_LLM_Are_What_You_Dont_Need - 分析深度学习模型在时间序列预测中的表现与局限
GithubMambaTransformers开源项目时间序列预测深度学习线性模型
本项目汇集大量研究论文和文章,深入分析变压器和大语言模型在时间序列预测中的表现及局限性。探讨这些深度学习模型处理时间序列数据的挑战,并介绍更适合的替代方法。为时间序列预测领域的研究和应用提供全面的参考资源。
chronos-t5-large - T5架构驱动的大规模时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测概率预测模型预训练模型
Chronos-T5-Large是一个大规模时间序列预测基础模型,基于T5架构设计,包含7.1亿参数。模型通过将时间序列转换为token序列进行训练,能够生成概率性预测结果。它在海量公开时间序列数据和合成数据上训练,适用于广泛的时间序列预测任务。研究人员可使用简洁的Python接口调用模型,获取未来趋势预测及相应的置信区间。
microprediction - 多功能时间序列预测和优化开源工具集
Githubmicroprediction开源项目时间序列预测算法优化金融预测
microprediction是一个综合性开源项目集,专注于时间序列预测和优化。该项目提供多个Python库,包括humpDay、timemachines和precise,分别用于无导数优化器评估、增量时间序列预测和协方差估计。这些工具能帮助提高预测精度和模型性能。项目还包含丰富的基准测试和评估工具,便于比较不同方法的效果。适用于数据科学研究和实际应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号