Project Icon

RSAlgorithms

集成传统与社交方法的开源推荐系统工具包

RSAlgorithms是一个开源推荐系统工具包,集成了传统和社交推荐算法。该项目提供基于评分数据的传统推荐方法,以及利用社交信息缓解数据稀疏问题的社交推荐方法。同时收录了其他研究者实现的经典算法。RSAlgorithms支持交叉验证,并具有灵活的参数配置功能。

disco - Ruby协同过滤推荐系统库 支持用户和物品推荐
GithubRailsRuby协同过滤开源项目推荐系统矩阵分解
Disco是一个用于Ruby和Rails的推荐系统库,基于协同过滤技术。该库支持用户和物品推荐,可处理显式和隐式反馈数据,并使用高性能矩阵分解算法。Disco提供简洁的API,支持存储推荐结果和模型,能够解决冷启动问题。此外,它可与近似最近邻库集成,提升大规模数据集的性能。
RePlay - 全周期推荐系统开发与评估框架
GithubRePlay开源项目推荐系统数据预处理模型评估超参数优化
RePlay是一个覆盖推荐系统全生命周期的开发评估框架。它集成了数据预处理、模型构建、参数优化、性能评估和模型集成等功能。该框架支持CPU、GPU等多种硬件,并可与PySpark结合实现分布式计算。RePlay能帮助开发者顺利将推荐系统从离线实验转到在线生产环境,提升系统的可扩展性和适应性。
MLAlgorithms - 机器学习算法从零实现的简洁教程
Deep learningGithubMachine learning algorithmsPythonRandom ForestsSupport vector machine开源项目
该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。
recommender_system_with_Python - Python推荐系统的实现与应用实例
GithubPython协同过滤开源项目推荐系统深度学习矩阵分解
详细讲解使用Python实现推荐系统的方法与案例,涵盖内容过滤、协作过滤和矩阵分解等基本理论,并通过实际项目展示这些技术的应用。此外,还介绍了基于Naver新闻数据的推荐系统、使用Keras和深度学习技术的实例,以及利用LangChain和GPT-4o提升推荐系统解释性的案例。更多代码及详细说明请参阅相关博客文章。
MultimodalRecSys - 多模态推荐系统资源与研究进展汇总
Github图神经网络多模态推荐系统开源项目推荐算法深度学习自监督学习
本项目汇总了多模态推荐系统领域的精选资源,包括最新研究论文、开源框架和数据集。内容涵盖通用多模态推荐、基于文本和图像的推荐等方向,并提供详细的文献综述和技术分类。项目重点关注代码实现,为研究人员和开发者提供了深入了解该领域的重要参考。资源列表持续更新,反映多模态推荐系统的最新进展。
BARS - 推荐系统开放基准测试项目
BARSGithub基准测试开源项目性能评估推荐系统
BARS项目致力于解决推荐系统领域缺乏统一基准测试的问题。它通过开放式基准测试提高研究可重复性和结果一致性。目前涵盖CTR预测和候选项匹配任务,未来将扩展到列表重排序和多任务推荐领域。该项目鼓励学术界和业界参与,共同推动推荐系统研究的进步。
Agent4Rec - 千名AI代理模拟真实用户推荐行为
Agent4RecGithubMovieLens-1M开源项目推荐系统模拟实验生成式智能体
Agent4Rec是一个推荐系统模拟器,基于大型语言模型创建1000个具有独特社交特征和偏好的AI代理。这些代理能与个性化电影推荐互动,模拟观看、评分等行为。项目探索AI代理在模拟真实用户推荐行为方面的潜力,支持多种推荐算法和配置,有助于研究推荐系统中的复杂问题。
Awesome-Recsys - 推荐系统领域顶级会议论文资源库
Github人工智能开源项目推荐系统数据挖掘机器学习深度学习
Awesome-Recsys项目汇集推荐系统领域顶级会议论文,包括SIGIR、RecSys、ICLR等重要会议的最新研究成果。该资源库定期更新,提供论文标题和链接,方便研究人员和从业者快速了解领域进展,获取感兴趣的研究内容。
Surprise - 专为推荐系统设计的Python科学计算工具包
GithubPythonSurprise协同过滤开源项目推荐系统机器学习
Surprise是一个专门用于构建和分析基于显式评分数据的推荐系统的Python科学计算工具包。它简化了数据集处理,提供多种预测算法和相似度度量,支持新算法实现,并具备评估和比较算法性能的工具。Surprise适用于学术研究和商业应用,为推荐系统开发提供了全面的解决方案。
rexmex - 推荐系统评估指标和报告工具库
Githubrexmex开源库开源项目推荐系统机器学习评估指标
rexmex是一个用于推荐系统评估的Python库,提供了全面的评估指标集合,涵盖排名、评分、分类和覆盖率等方面。该库集成了经典指标和最新数据挖掘研究成果,并提供报告生成和性能可视化功能。rexmex操作简便,适用于多种推荐系统场景,可帮助研究人员和开发者全面评估系统性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号