Project Icon

coreml-examples

CoreML演示应用集合展示苹果神经引擎优化技术

该仓库收录了多个为苹果神经引擎优化的CoreML演示应用,展示了先进机器学习模型在iOS设备上的应用。涵盖FastViT图像分类、Depth Anything V2单目深度估计和DETR语义分割等模型。这些实例不仅展示CoreML功能,还为开发者提供在iOS设备上部署复杂机器学习模型的参考。项目采用coremltools进行优化和测试,是iOS机器学习开发的重要学习资源。

examples - Pinecone向量数据库与AI应用示例
AIGithubGoogle ColabJupyter NotebookPinecone向量数据库开源项目
这个资源库包含Pinecone向量数据库及常见AI模式、工具和算法的示例应用和Jupyter Notebooks,供用户下载、学习和修改。资源库分为生产就绪示例和学习探索示例,并提供详细的入门指南和Google Colab的实验指导。欢迎反馈和贡献以改进该社区资源。
Awesome-RealityKit - RealityKit开发资源与项目精选
3DARAppleGithubRealityKitvisionOS开源项目
Awesome-RealityKit汇集了丰富的RealityKit开发资源,包括社区项目、Apple官方示例、工具包和WWDC视频。项目涵盖从入门到进阶的AR开发内容,适合不同水平的开发者学习和参考。该集合定期更新,反映RealityKit生态系统的最新动态,为开发者提供全面的学习和实践资料。
AndroidTensorFlowMachineLearningExample - Android应用集成TensorFlow的详细教程
AndroidGithubTensorFlow对象检测开源项目机器学习示例项目
此项目提供了在Android应用中集成TensorFlow的详细指南。开发者可以学习如何构建和使用TensorFlow项目及其库文件(.so和.jar文件),通过具体示例了解如何使用TensorFlow进行物体检测,包括处理从相机拍摄的图像。适合希望将机器学习技术应用在移动设备上的开发者。
mac-ml-speed-test - Apple Silicon Mac机器学习性能测试工具
GithubMacPyTorchTensorFlow开源项目性能测试机器学习
mac-ml-speed-test是一个专为Apple Silicon Mac设计的机器学习性能测试项目。通过简单脚本对比不同Mac设备上的机器学习模型速度,涵盖计算机视觉和自然语言处理等领域。项目使用PyTorch、TensorFlow等主流框架,并提供详细配置指南,便于用户进行性能评估。测试内容包括图像分类、文本分类和LLM文本生成等任务,使用CIFAR100、Food101和IMDB等数据集。此外,项目还包括与NVIDIA TITAN RTX和Google Colab免费版的性能对比,为用户提供更全面的参考数据。
ml-stable-diffusion - 在Apple设备上实现高效稳定的AI图像生成
AI绘图Core MLGithubStable Diffusion开源项目性能优化模型转换
ml-stable-diffusion是一个开源项目,旨在优化Stable Diffusion模型在Apple设备上的运行。它包含用于模型转换的Python工具和用于iOS/macOS应用集成的Swift包。通过权重压缩等技术,该项目显著提升了性能和内存效率,使开发者能够在Apple平台应用中实现高质量的AI图像生成。
imgclsmob - 深度学习卷积网络的研究与实现,涵盖多种框架和预训练模型
GithubMXNetPyTorchTensorFlowcomputer visiondeep learning开源项目
此存储库专注于计算机视觉领域的卷积网络研究,包含多种分类、分割、检测和姿态估计模型的实现,支持MXNet/Gluon、PyTorch、Chainer、Keras和TensorFlow等框架。提供了训练、评估和转换的脚本以及针对不同框架的PIP包,模型预训练于ImageNet、CIFAR-10/100、SVHN等数据集,能够自动加载预训练权重。
machine-learning-experiments - 交互式机器学习实验的集合
GithubJupyter笔记本TensorFlow卷积神经网络开源项目机器学习递归神经网络
该项目展示了一系列交互式机器学习实验,包括Jupyter笔记本来演示模型训练过程,以及在线演示页面来展示模型运行效果。涵盖多层感知机至卷积神经网络等多种技术,适合探索和学习各类机器学习方法。
smol-vision - 前沿视觉模型优化与定制的实用技巧集锦
GithubONNX量化Smol Vision开源项目模型微调知识蒸馏视觉模型优化
smol-vision项目汇集了多种视觉模型优化技术,包括量化、ONNX转换、模型微调和知识蒸馏。项目提供了实用示例,展示如何使用Optimum优化目标检测模型、微调PaliGemma和Florence-2视觉语言模型,以及通过torch.compile加速基础模型。这些方法旨在帮助开发者提高模型性能、缩小规模和加快推理速度,使模型更好地适应各种硬件环境。
Transformers-Tutorials - Transformers库深度学习模型教程集合
GithubHuggingFaceTransformers开源项目深度学习自然语言处理计算机视觉
这个项目汇集了基于HuggingFace Transformers库的多种深度学习模型教程,涵盖自然语言处理和计算机视觉等领域。内容包括BERT、DETR、LayoutLM等模型的微调和推理示例,展示了在图像分类、目标检测、文档分析等任务中的应用。所有代码采用PyTorch实现,并提供Colab notebooks方便实践。
Android-TensorFlow-Lite-Example - 在Android应用中集成TensorFlow Lite的介绍,用于通过相机图像进行对象检测
AndroidGithubTensorFlow Lite对象检测应用程序开源项目机器学习
该项目展示了如何在Android应用中集成TensorFlow Lite,用于通过相机图像进行对象检测。这是一个适合学习和实际应用的机器学习示例项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号