Project Icon

optimum-quanto

PyTorch模型量化框架 提升性能和效率

Optimum Quanto是专为Optimum设计的PyTorch量化框架。它支持eager模式、多设备部署,自动插入量化/反量化存根和操作,实现从浮点到动态/静态量化模型的无缝转换。支持多种精度的权重和激活量化,有效提升模型性能和内存效率。该框架为Hugging Face和原生PyTorch模型提供简便的量化流程。

LoftQ - 大型语言模型低资源量化微调新方法
GithubLoRALoftQ大语言模型开源项目微调量化
LoftQ是一种为大型语言模型设计的量化微调方法。它通过寻找最佳的量化LoRA初始化,实现有限GPU资源下的高效模型微调。LoftQ支持LLAMA、Falcon、Mistral等主流模型,提供相关工具和示例代码。在WikiText-2和GSM8K等任务上,LoftQ展现出优秀性能,为低资源环境中的LLM应用开发创造了新可能。
Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
q-diffusion - 扩散模型的创新量化方法
GithubQ-Diffusion图像生成开源项目扩散模型深度学习量化
Q-Diffusion是一种针对扩散模型的后训练量化方法。它能将无条件扩散模型压缩至4位精度,同时保持接近原模型的性能。该方法通过时间步感知校准和分离捷径量化技术解决了扩散模型量化的主要难题。Q-Diffusion不仅适用于无条件图像生成,还可用于文本引导的图像生成,首次实现了4位权重下的高质量生成效果。这一技术为扩散模型的高效实现开辟了新途径。
smol-vision - 前沿视觉模型优化与定制的实用技巧集锦
GithubONNX量化Smol Vision开源项目模型微调知识蒸馏视觉模型优化
smol-vision项目汇集了多种视觉模型优化技术,包括量化、ONNX转换、模型微调和知识蒸馏。项目提供了实用示例,展示如何使用Optimum优化目标检测模型、微调PaliGemma和Florence-2视觉语言模型,以及通过torch.compile加速基础模型。这些方法旨在帮助开发者提高模型性能、缩小规模和加快推理速度,使模型更好地适应各种硬件环境。
low-bit-optimizers - 4位优化器技术减少内存占用 提升大规模模型训练能力
4位优化器AdamWGithub内存效率开源项目神经网络训练量化
Low-bit Optimizers项目实现了一种4位优化器技术,可将优化器状态从32位压缩至4位,有效降低神经网络训练的内存使用。通过分析一阶和二阶动量,该项目提出了改进的量化方法,克服了现有技术的限制。在多项基准测试中,4位优化器实现了与全精度版本相当的准确率,同时提高了内存效率,为大规模模型训练开辟了新途径。
AutoQuant - 开源自动化机器学习工具包
AutoCatBoostRegressionGithub回归模型开源项目机器学习模型评估自动化建模
AutoQuant是一个开源的自动化机器学习工具包,旨在提升模型开发和运营效率。它集成了CatBoost、LightGBM、XGBoost和H2O等先进算法,支持GPU和CPU计算。该工具包涵盖了特征工程、模型训练、评估和部署等机器学习全流程。AutoQuant在多个行业应用中表现出色,为数据科学家提供了一个高效的机器学习开发平台。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
Mistral-Small-22B-ArliAI-RPMax-v1.1-GGUF - AI模型量化方法提升硬件性能与资源效率
GithubHuggingfaceMistral-Small-22B-ArliAI-RPMax-v1.1基于ARM的优化开源项目性能模型模型下载量化
通过llama.cpp进行量化优化,AI模型适用于各种RAM配置和资源受限环境。多种量化选项可供选择,从高质量到低资源占用,确保最佳性能表现。适用于ARM以及其他特定硬件,通过选择I-quant和K-quant格式实现速度与质量的平衡,优化AI推理性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号