Project Icon

RAG-Survey

AI内容生成中的增强检索方法全面指南

深入探索增强检索技术如何推动AI内容生成的进步。RAG-Survey项目综合最新研究,涵盖查询基准、潜在表达式和逻辑基础RAG等多种方法,持续更新其调研报告和文献库。项目专注于提升检索增强生成模型,精准高效地应用于开放域问答、代码生成等多个AI领域。

Awesome-Machine-Generated-Text - 机器生成文本研究资源汇总与综述
GPTGithub人工智能大规模语言模型开源项目自然语言处理预训练
这是一个全面的机器生成文本研究资源库,汇集了大规模预训练语言模型、分析方法和检测技术等关键内容。项目收录了OpenAI、DeepMind和Google等顶级机构的重要成果,包括GPT系列、Chinchilla和T5等著名模型。此外还整理了相关论文、演示、数据集和共享任务,为该领域的研究与开发提供了丰富参考。
text2vec-base-chinese-rag - 基于CoSENT框架的中文RAG文本嵌入模型
FAISSGithubHuggingfaceLangchainRAG向量检索开源项目模型自然语言处理
text2vec-base-chinese-rag采用CoSENT训练框架构建,专注于中文文本理解和RAG任务。模型支持文本相似度计算,集成Langchain和FAISS向量存储功能,实现高效文档检索。项目提供自定义LLM的RAG实现示例,便于开发者快速应用和扩展。
awesome-generative-ai - 生成式人工智能资源集合,包括最新的学术研究、技术开发、在线教学与实用工具
Generative AIGithub人工智能在线教程大型语言模型开源项目技术文章
Awesome Generative AI聚合了范围广泛的生成式人工智能资源,包括最新的学术研究、技术开发、在线教学与实用工具。更新频繁,内容全面,是AI专业人士和爱好者不可错过的财富库。
GraphRAG4OpenWebUI - 高级信息检索技术在 Open WebUI 的全面集成
GithubGraphRAGGraphRAG4OpenWebUILocal LLM信息检索嵌入模型开源项目
GraphRAG4OpenWebUI 为 Open WebUI 提供了一个强大而高效的信息检索系统,集成了微软研究院的 GraphRAG 技术,支持本地搜索、全球搜索和 Tavily 搜索。该项目专为需要精确和全面搜索结果的开放网络用户界面设计,并且支持本地语言模型和嵌入模型,增强了灵活性和隐私性。通过多个 API 接口,用户可以轻松实现复杂的信息检索需求。
filco - 优化检索增强生成的上下文过滤方法
FilCoGithub上下文过滤开源项目数据集处理检索增强生成语言模型
FilCo项目开发了一种新型上下文过滤方法,旨在改进检索增强生成(RAG)系统。该方法通过筛选最相关的上下文信息来提高生成质量。项目开源了完整代码,涵盖上下文评分、数据处理、模型训练和评估等功能。研究人员可以复现实验并将此技术应用于问答和对话等RAG任务中。
Paper-Reading-ConvAI - 对话系统与自然语言生成研究的全面综述
Conversational AIDeep LearningDialogue SystemsGithubNatural Language GenerationTransformer开源项目
项目提供了对话系统和自然语言生成领域的最新研究文献,覆盖深度学习、多模态对话、个性化对话、情感对话、任务导向对话和开放域对话等主题。同时,详细总结了自然语言生成的理论与技术、可控生成、文本规划及解码策略,旨在协助研究人员高效掌握相关技术和方法。
ragna - 高效灵活的RAG编排框架简化AI应用开发
GithubRAG编排框架Ragna开源项目文档检索自然语言处理
Ragna是一个RAG(检索增强生成)编排框架,旨在简化AI应用开发过程。该框架支持Python API、REST API和Web应用界面,方便开发者构建和部署基于RAG的智能系统。Ragna的设计注重灵活性和可扩展性,适应多种AI应用场景。该框架有助于加速智能解决方案的开发,促进AI技术在各领域的应用。
Retrieval-Augmented-Visual-Question-Answering - 细粒度后期交互多模态检索视觉问答系统
FLMRGithub基准测试多模态检索开源项目视觉问答预训练模型
这个项目开发了一个基于细粒度后期交互多模态检索的视觉问答系统。系统在OK-VQA等多个基准数据集上实现了先进的检索和问答性能。它采用模块化架构,包含预训练映射网络、FLMR检索器和BLIP2读取器等关键组件。项目提供完整的代码库,支持训练和评估,并发布了预训练模型和处理后的数据集,便于研究人员进行后续研究。
data-selection-survey - 全面探索语言模型数据选择的关键技术
GithubWeb数据多语言开源项目数据选择语言模型预训练
这个项目全面梳理了语言模型数据选择的各个环节,涵盖预训练、指令微调和偏好对齐等阶段。内容包括语言过滤、启发式方法、数据质量评估和去重等核心技术,还探讨了多语言和特定领域模型的专门选择策略。项目汇集了众多相关研究文献,为语言模型开发提供了系统的参考资源。
Verba - 开源RAG应用程序实现智能文档检索与问答
GithubRAGVerba人工智能开源项目数据查询
Verba是一款开源的检索增强生成(RAG)应用程序,提供端到端的简便界面。支持多种模型和数据类型,可在本地或云端部署。该应用程序允许用户探索数据集、提取见解,并通过自然语言与文档交互。Verba整合了先进的RAG技术和Weaviate的上下文感知数据库,可根据具体需求选择RAG框架、数据类型、分块和检索技术以及LLM提供商。这为文档问答和知识库分析提供了灵活而强大的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号