Project Icon

Cam2BEV

深度学习实现多视角车载图像到语义分割鸟瞰图转换

该项目提出一种深度学习方法,将多个车载摄像头图像转换为语义分割鸟瞰图(BEV)。采用合成数据集训练,可良好泛化到真实场景。方法使用语义分割图像作为输入,缩小了仿真与真实数据的差距,无需手动标注。项目开源了代码、网络架构和数据集,适用于自动驾驶环境感知研究。相比传统逆透视映射,该方法在处理3D物体和遮挡区域时表现更佳。

EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
DriveMLM - 融合大语言模型的自动驾驶行为规划框架
DriveMLMGithub多模态大语言模型开源项目自动驾驶行为规划
DriveMLM是一个创新的自动驾驶框架,融合了大语言模型技术。该框架通过标准化决策状态、采用多模态大语言模型进行行为规划,并设计数据引擎收集训练数据,实现了在真实模拟环境中的闭环自动驾驶。在CARLA Town05 Long测试中,DriveMLM获得76.1分的驾驶得分,比Apollo基准高出4.7分。这一成果为大语言模型在自动驾驶领域的应用提供了新的研究方向。
Open3D-PointNet2-Semantic3D - 使用Open3D和PointNet++进行高效3D数据处理与语义分割
GithubOpen3DPointNet++Semantic3D开源项目机器学习语义分割
该项目演示了如何使用Open3D与PointNet++进行3D点云的加载、预处理及语义分割,提供了高效的点云操作方法和训练预测流程,为Semantic3D数据集提供了简洁优化的基准实现,适用于深度学习应用的快速开发。
cam_lidar_calibration - 相机与激光雷达自动校准优化工具
Github传感器融合开源项目棋盘格标定点云处理相机激光雷达标定计算机视觉
这是一个开源的相机与激光雷达自动校准工具,通过优化样本选择简化校准流程。它克服了基于目标校准的局限性,可获得适合整个场景的参数估计及不确定性。工具提供硬件设置、配置、数据采集和结果评估的使用说明,支持ROS Melodic环境。
SeeSR - 基于语义感知的实景图像超分辨率方法
GithubSeeSR图像超分辨率开源项目扩散模型真实世界图像语义感知
SeeSR是一种新型语义感知实景图像超分辨率技术,结合稳定扩散模型和语义信息提升低分辨率图像质量。该方法已被CVPR2024接收并在GitHub开源。SeeSR可处理多种场景图像,并支持快速推理。项目提供预训练模型、测试数据集和使用说明,便于研究和应用。此外,项目还包含DAPE和SeeSR模型的训练指南,以及用于生成训练数据的工具。SeeSR采用tiled vae方法节省GPU内存,并提供Gradio演示界面。该技术在多个真实世界图像数据集上展现出优异性能。
lidar-camera-fusion - LiDAR点云与相机图像融合的ROS实现
GithubLiDARROSVelodyne VLP16开源项目点云投影相机融合
这个ROS项目实现了Velodyne VLP16 LiDAR点云与RGB相机图像的融合。通过将点云转换为距离图像并应用双线性插值,提高了点云数据密度。项目包含安装指南、ROS主题说明,以及与FLOAM包结合的里程计测试。该技术在户外垃圾检测和深度估计等领域具有应用前景。
RGBD-semantic-segmentation - RGB-D语义分割技术发展综述及性能评估
GithubRGBD语义分割开源项目性能对比数据集深度学习评估指标
本项目汇总了RGB-D语义分割领域的最新研究成果,提供详尽的论文列表和性能对比。涵盖NYUDv2等主流数据集的基准结果,包括像素精度、平均精度、mIoU等关键指标。通过定期更新反映该领域最新进展,为计算机视觉研究人员提供全面的参考资源。项目内容还包括数据集介绍、评估指标说明和详细的性能对比表格,全面呈现RGB-D语义分割技术的发展脉络。对于想深入了解该领域的研究人员和工程师而言,这是一个高价值的信息聚合平台。
deep-license-plate-recognition - 基于深度学习的多功能车牌识别系统
ALPRAPIGithub图像处理开源项目机器学习车牌识别
deep-license-plate-recognition是一个基于深度神经网络的自动车牌识别系统。该项目可在复杂环境下准确识别车牌,支持90多个国家,能识别车辆类型、品牌、型号和颜色。系统提供REST API接口,兼容多种编程语言和操作系统平台。适用于停车场管理、道路监控等场景,并提供免费试用。
Real3D - 基于真实图像的大规模3D重建模型
3D重建GithubReal3D开源项目深度学习自监督学习计算机视觉
Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。
End-to-end-for-chinese-plate-recognition - 中文车牌识别与矫正的解决方案
CNNEnd-to-end-for-chinese-plate-recognitionGithubTensorFlowU-Net开源项目车牌识别
项目基于u-net、cv2和卷积神经网络(cnn),使用tensorflow和keras实现。功能包括中文车牌的定位、矫正和识别。通过u-net进行图像分割,cv2进行边缘检测和车牌区域矫正,再用cnn实现多标签端到端识别。测试表明,系统在拍摄角度倾斜、强曝光和昏暗环境下表现出色,甚至对某些百度AI未能识别的车牌也能识别。请确保输入图片尺寸小于240x80,以获得最佳识别效果。详情请参阅CSDN博客。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号