Project Icon

inseq

基于Pytorch的序列生成模型解释性分析工具

Inseq是一个基于Pytorch的可定制工具包,专为序列生成模型的后验可解释性分析设计。它支持多种特性归因方法,可高效分析单例或整套数据集的各类模型,包括GPT-2。Inseq支持在Jupyter Notebook、浏览器和命令行中进行可视化,并提供多种后处理和归因映射合并功能。

fairseq - 序列建模工具包,支持机器翻译与文本生成
FairseqGithubPyTorch序列建模开源项目文本生成机器翻译
Fairseq 是一个序列建模工具包,适用于机器翻译和文本生成。支持多GPU训练,提供灵活配置和扩展能力,以及多种预训练模型和参考实现。内置束搜索和抽样等算法,支持混合精度训练和参数CPU卸载,为研究人员和开发人员提供高效解决方案。
lightseq - 基于CUDA的高性能训练与推理库
BERT性能GithubLightSeqTransformer模型序列处理开源项目混合精度训练
LightSeq为基于CUDA的高性能训练与推理库,专为序列处理和生成优化,支持BERT、Transformer等主流模型。最新版本新增int8混合精度功能,显著提升训练与推理效率,完美兼容Fairseq、Hugging Face等框架。
pytorch-seq2seq - 使用PyTorch实现序列到序列模型的教程
GithubPyTorchseq2seq开源项目机器翻译神经网络翻译
该项目提供一系列使用PyTorch实现seq2seq模型的教程,特别是对德语到英语的翻译。教程涵盖了seq2seq网络的基础、编码器-解码器模型、注意机制以及使用spaCy进行数据分词,并提供了详细的代码和示例,帮助学习者深入理解和应用相关技术。
AdaSeq - 完善的序列理解模型开发库,涵盖多种高级任务
AdaSeqGithubModelScopePyTorch命名实体识别序列理解开源项目
AdaSeq是由阿里巴巴达摩院开发的一体化序列理解工具库,构建在ModelScope之上。支持词性标注、分块、命名实体识别、实体类型化、关系抽取等多种任务。提供丰富的前沿模型和训练方法,优于许多现有框架。该库使用简便,只需一行命令即可生成模型,支持自定义模型和数据集。适用于研究人员和开发者,项目处于快速开发阶段,并提供多语言、多领域的数据集和在线演示。
sequitur - 高效创建和训练序列数据自编码器的Python库
GithubPyTorchsequitur序列数据开源项目深度学习自编码器
sequitur是一个专为序列数据设计的Python自编码器库。它集成了三种自编码器架构和预设训练循环,使用者只需两行代码即可完成模型构建和训练。该库适用范围广泛,涵盖单变量、多变量时间序列及视频等序列数据,尤其适合快速入门自编码器的开发者。sequitur灵活支持数字、向量和矩阵等多种序列类型,为数据处理提供多样化选择。
automated-interpretability - 语言模型神经元行为的自动化解释工具
GPT-2Github开源项目数据集模型权重神经元行为自动解释性
automated-interpretability项目开发了一套自动化工具,用于生成、模拟和评分语言模型中神经元行为的解释。该项目提供了代码库、神经元激活查看器和GPT-2 XL神经元的公开数据集。这些资源旨在帮助研究人员和开发者深入理解大型语言模型的内部机制。
fairseq2 - 先进序列建模工具包 支持多任务自定义模型训练
Githubfairseq2序列建模开源项目机器学习自然语言处理
fairseq2是由Facebook AI Research开发的序列建模工具包,作为fairseq的后续版本,为研究人员和开发者提供了强大的自定义模型训练功能。它支持包括LLaMA系列、Mistral 7B和NLLB-200在内的多种先进模型,可用于翻译、摘要和语言建模等任务。fairseq2提供Linux和macOS的预构建包,兼容多种PyTorch和CUDA版本,为序列建模研究和应用提供了灵活的解决方案。
nnsight - 解释和操作深度学习模型内部的Python包
GithubPyTorchnnsight开源项目模型操作深度学习模型神经网络解释
nnsight是一个专门用于深度学习模型内部解释和操作的Python包。它可以访问模型隐藏状态、进行噪声注入和跨提示干预。该工具支持保存中间值、修改参数和多token生成等功能,方便研究人员和开发者深入分析和调试神经网络模型。
transformer-explainer - 帮助理解Transformer模型与GPT-2预测的实时交互式工具
GPT-2Georgia Institute of TechnologyGithubMIT许可Transformer Explainer交互式可视化工具开源项目
Transformer Explainer 是一款互动可视化工具,帮助理解基于Transformer的模型如GPT的工作原理。该工具在浏览器中运行实时的GPT-2模型,允许实验自己的文本并实时观察Transformer内部组件的协同预测过程。适合技术人员与学习者深入探索Transformer模型机制与应用。
transformers-interpret - 快速解读Transformer模型的工具,只需2行代码
GithubTransformers Interprettransformers可视化开源项目文本分类解释工具
Transformers-interpret是一款为Transformer模型设计的解释工具,只需简单代码即可实现。支持文本和计算机视觉模型,并可在笔记本中展示或保存为PNG和HTML文件。通过导入预训练模型和tokenizer,用户能快速获得预测分类解释,并提供可视化功能。此项目基于Captum库构建,支持多标签分类等功能,帮助开发者深入理解模型决策。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号