Project Icon

grokfast

放大低频梯度加速模型泛化

Grokfast是一种创新的机器学习优化方法,通过放大参数梯度的低频成分来加速模型泛化。该方法可将原本需数万次迭代的泛化过程缩短50倍以上,仅需添加几行代码即可实现。Grokfast适用于图像、语言和图形等多种任务,为研究突然泛化现象提供了实用工具。项目开源了代码实现,并提供了详细的使用说明和实验复现指南。

grok-1 - 314B参数语言模型 支持混合专家系统和8位量化
GithubGrok-1大型语言模型开源权重开源项目模型规格混合专家模型
Grok-1是一个开源的大型语言模型,拥有314B参数和8,192个token的最大序列长度。它采用混合专家系统架构,每个token使用2个专家,包含64层结构。模型具有48个查询注意力头和8个键/值注意力头,嵌入维度为6,144。Grok-1支持激活分片和8位量化。项目提供JAX示例代码用于加载和运行模型,并可通过种子链接或Hugging Face下载权重。
The Grok App - 智能文档搜索与分析解决方案
AI分析AI工具代码解释文档上传文档搜索平台智能问答
The Grok App是一个AI驱动的文档搜索平台,支持多格式文档上传和智能分析。通过识别隐藏模式和趋势,平台提供全面的内容理解。用户可使用AI问答功能获取精确信息,还可利用代码解释功能探索复杂代码库。该工具旨在提高文档处理效率,适合个人和企业使用。
Grok-1-GGUF - Grok-1 GGUF量化支持llama.cpp的最新特性
GithubGrok-1Huggingfacehuggingfacellama.cpp开源项目模型模型下载量化
Grok-1 GGUF量化文件提供对llama.cpp的支持,通过简化的流程提升模型运行效率。可通过llama.cpp从Huggingface直接下载和运行分片文件,支持包括Q2_K、IQ3_XS、Q4_K和Q6_K在内的多种版本,推荐使用IQ3_XS版本。
perpetual - 自优化梯度提升机器学习算法
GithubPerpetualBooster开源项目梯度提升机自动机器学习过拟合预防预测性能
PerpetualBooster是一种创新的梯度提升机器算法,无需进行超参数优化。通过调整budget参数,该算法能够在单次运行中达到传统GBM算法100次迭代的精度。在多个数据集的测试中,PerpetualBooster展现出显著的性能优势,相较于LightGBM等算法,速度提升约100倍。该算法提供Python和Rust API接口,适用于回归和分类任务。这种高效的机器学习方法特别适用于需要快速建模和预测的场景,如金融分析、推荐系统和风险评估等领域。
codegemma-2b - 深度学习模型微调的新方案:提升效率与内存节约
GemmaGithubHuggingfaceLlama-2Unslothfinetune内存优化开源项目模型
CodeGemma-2b项目使用Unsloth技术,加速多个深度学习模型的微调,包括Mistral、Gemma、Llama等。速度提升最高达5倍,内存使用减少70%。通过Google Colab和Kaggle的免费notebook,用户可以轻松展开微调工作。简化的界面设计支持从数据添加到模型导出的完整流程,适合初学者快速上手。这种创新优化方法节省计算资源,提高模型性能,是开发者提升生产力的有力助手。
GaLore - 内存高效训练策略 全参数学习与低秩梯度投影
GaLoreGithub低秩训练内存效率大语言模型开源项目梯度投影
GaLore是一种内存高效的低秩训练策略,实现全参数学习的同时比常见低秩适应方法更节省内存。作为梯度投影方法,GaLore可通过两行代码轻松集成到现有优化器中。这一策略不仅优化内存使用,还保持训练准确性,为大规模语言模型训练提供新解决方案。项目目前处于预发布阶段,计划未来支持多GPU训练和内存高效的低秩梯度累积等功能。
SpeeD - 通过时间步长优化实现扩散模型训练加速
AI生成GithubSpeeD开源项目扩散模型深度学习训练加速
SpeeD是一种创新的扩散模型训练加速技术,通过对时间步长的深入分析和优化,将训练过程分为加速、减速和收敛三个区域。该方法采用重采样和重加权策略,实现了训练速度的显著提升。SpeeD易于与现有模型集成,能有效提高扩散模型的训练效率,为图像生成等任务提供了新的解决方案。
super-gradients - 开源工具库简化SOTA计算机视觉模型的训练与部署
GithubSuperGradients开源项目模型训练深度学习计算机视觉预训练模型
Super-Gradients是一个专注于计算机视觉的开源深度学习库。它提供预训练SOTA模型和易用训练工具,支持分类、分割、检测等任务。该项目集成多种训练技巧,兼容主流部署框架,可快速将模型应用于生产。Super-Gradients适用于学术研究和工业应用,是一个高效的计算机视觉开发工具。
GPTFast - Hugging Face Transformers模型推理加速工具
GPTFastGithubHugging Face开源项目推理加速量化静态键值缓存
GPTFast是一个为Hugging Face Transformers模型优化推理速度的开源Python库。它集成了多种加速技术,如静态键值缓存、int4量化和推测解码,可将模型推理速度提升7.6-9倍。GPTFast支持torch.compile、int8量化、GPTQ int4量化等优化方法,通过简单的API调用即可应用于各类Hugging Face模型。该项目持续更新,未来计划引入更多先进的加速技术。
GradCache - 突破GPU/TPU内存限制,实现对比学习无限扩展
GPUGithubGradient CacheJAXPytorch对比学习开源项目
Gradient Cache技术突破了GPU/TPU内存限制,可以无限扩展对比学习的批处理大小。仅需一个GPU即可完成原本需要8个V100 GPU的训练,并能够用更具成本效益的高FLOP低内存系统替换大内存GPU/TPU。该项目支持Pytorch和JAX框架,并已整合至密集段落检索工具DPR。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号