Project Icon

yoloair2

多模型集成的YOLO目标检测工具库

YOLOAir2是一个基于PyTorch的YOLO系列算法工具库,集成了YOLOv7、YOLOv5等多种YOLO变体。它统一了模型代码框架和应用方式,支持用户自由组合backbone、neck和head模块,以构建定制化的目标检测网络。除目标检测外,该项目还整合了实例分割、图像分类等相关任务,为计算机视觉研究提供了便利的实验平台。

caffe2 - 轻量级、模块化和可扩展的深度学习框架
Caffe2GithubPyTorch开源项目模块化深度学习框架高性能
Caffe2是一个以表达力、速度和模块化为设计理念的轻量级、模块化和可扩展的深度学习框架。欲了解更多信息,请访问caffe2.ai。
OBBDetection - 多框架支持的开源目标检测工具箱 提供灵活表示方法
GithubMMdetectionOBBDetection开源项目深度学习目标检测计算机视觉
OBBDetection是基于MMdetection v2.2的开源目标检测工具箱。它支持多种检测框架,包括RoI Transformer和Gliding Vertex等。该工具箱提供灵活的检测框表示方法,涵盖水平边界框、定向边界框和4点框。OBBDetection实现了S2ANet、Oriented R-CNN等多种最新定向目标检测方法,同时也兼容多种水平检测算法。作为一个全面的目标检测工具,它继承了MMdetection的特性,适用于各种复杂场景的目标检测任务。
Grounded-SAM-2 - 多模态视频目标检测与分割框架
GithubGrounding DINOSAM 2图像分割开源项目目标检测视频追踪
Grounded-SAM-2是一个开源项目,结合Grounding DINO和SAM 2技术,实现图像和视频中的目标检测、分割和跟踪。该项目支持自定义视频输入和多种提示类型,适用于广泛的视觉任务。通过简化代码实现和提供详细文档,Grounded-SAM-2提高了易用性。项目展示了开放世界模型在处理复杂视觉任务中的潜力,为研究人员和开发者提供了强大的工具。
models - 产业级开源模型库,支持多场景端到端开发
Github图像分类开源模型库开源项目目标检测语义理解飞桨
飞桨开源模型库提供经过实践验证的主流模型,支持语义理解、图像分类、目标检测等场景,助力企业低成本开发和快速集成。模型库根据国内企业研发流程定制,广泛应用于能源、金融、工业、农业等领域,包含超过600个官方模型和260个生态模型。
yolov5-deepsort-tensorrt - 基于YOLOv5和DeepSORT的Jetson设备目标跟踪系统
DeepSortGithubJetsonTensorRTYolov5开源项目目标跟踪
这个项目是YOLOv5和DeepSORT算法在Jetson设备上的C++实现,针对Jetson Xavier NX和Jetson Nano进行了优化。系统能够高效跟踪多个人头目标,在Jetson Xavier NX上处理70多个目标时可达到10 FPS。项目包含环境配置、模型生成和运行指南,支持自定义模型,并提供了不同YOLOv5版本的兼容性说明。适合需要在边缘设备上进行高性能目标跟踪的应用场景。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
DALLE2-pytorch - Pytorch实现的OpenAI DALL-E 2
DALL-E 2GithubPytorch开源项目文本到图像神经网络自监督学习
DALL-E 2的Pytorch实现由OpenAI开发,采用先进的神经网络技术将文本描述转化为高质量图像。本版本特别优化扩散先验网络,提供高性能的模型变体。开源项目鼓励开发者通过GitHub和Hugging Face参与贡献,并在Discord社区进行交流和支持。
boxmot - BoxMOT:支持分割、目标检测和姿态估计的多对象跟踪模块
BoxMOTGithubYolov8多目标跟踪姿态估计开源项目目标检测
BoxMOT项目提供可插拔的多对象跟踪模块,支持分割、目标检测和姿态估计。提供适用于各种硬件配置的跟踪方法,包括CPU和GPU。兼容多种ReID模型及Yolov8、Yolo-NAS、YOLOX等目标检测模型,并通过快速实验脚本提高实验效率。
UltimateLabeling - 集成先进检测和跟踪技术的多功能视频标注工具
GithubOpenPifPafPyQt5UltimateLabelingYOLO开源项目视频标注
UltimateLabeling是一个基于Python的多功能视频标注工具,使用PyQt5开发,集成了前沿的对象检测和跟踪技术。主要功能包括通过SSH连接远程GPU服务器、使用YOLO和OpenPifPaf进行对象和姿态检测、采用匈牙利算法进行轨迹分配、进行SiamMask视觉对象追踪,以及视频缩放、可调节边框和骨架等。适用于多种对象和姿态检测与标注场景。
monodepth2 - 基于自监督学习的单目深度估计实现
GithubMonodepth2PyTorch开源项目深度估计自监督学习计算机视觉
本项目提供了PyTorch实现的代码,用于训练和测试深度估计模型。代码采用自监督学习方法,支持单目和立体图像的深度预测。提供多种预训练模型和自定义数据集,兼容不同的图像分辨率。适用于研究和非商业用途,包含详细的设置指南、训练和评估说明。用户可通过此项目高效开发和优化深度估计模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号