Project Icon

DeepLagrangianFluids

拉格朗日流体模拟的连续卷积神经网络方法

DeepLagrangianFluids项目实现了基于连续卷积的粒子流体模拟网络,源于ICLR 2020会议发表的研究成果。项目包含数据生成、模型训练和预训练模型运行的完整代码,支持PyTorch和TensorFlow框架,并集成Open3D等库实现高效模拟与可视化。这种新方法在流体动力学模拟的准确性和计算效率方面取得了显著进展。

deepflame-dev - 深度学习赋能的开源多相反应流CFD软件
CFDDeepFlameGithubOpenFOAM反应流开源项目深度学习
DeepFlame是一款开源的深度学习赋能计算流体动力学软件包,适用于单相或多相、层流或湍流、全速域反应流模拟。它整合了OpenFOAM、Cantera和PyTorch的功能,提供GPU加速、自适应网格细化、多种求解器和燃烧模型。该软件旨在支持下一代异构超级计算和AI加速基础设施,促进反应流仿真技术的进步。
PhiFlow - 注重物理模拟与机器学习的开源仿真工具
GPU执行GithubPhiFlowPython开源项目机器学习模拟工具包
PhiFlow 是一款开源仿真工具包,专为优化和机器学习应用设计。它主要用 Python 编写,与 NumPy、PyTorch、Jax 和 TensorFlow 深度集成,利用这些框架的自动微分功能,简化涉及学习模型和物理仿真的可微函数构建。PhiFlow 特别适用于流体现象的 PDE 操作,通过联网操作支持实时可视化和交互控制,并支持 GPU 执行,为用户提供简洁、灵活且可扩展的编码体验。
GaussianFlow - 高斯动态结合点云渲染的4D内容创作方法
3D重建GaussianFlowGithub光流开源项目深度学习计算机视觉
GaussianFlow项目提出了一种4D内容创作方法,结合高斯动态与点云渲染技术。该项目利用优化的CUDA实现高效计算高斯流,并采用特定的梯度计算策略提高训练速度。这一方法为动态场景建模和渲染提供了新的解决方案,可应用于虚拟现实、增强现实和计算机图形学等领域。
RectifiedFlow - 直线路径优化的快速数据生成与传输技术
GithubRectified Flow图像生成开源项目机器学习深度学习生成模型
RectifiedFlow是一种新型机器学习方法,通过连接样本间的直线路径并学习ODE模型,建立分布间的传输映射。该方法反复优化ODE轨迹,实现高效的一步生成,在保持多样性的同时提高了FID指标。RectifiedFlow在生成建模和无监督域转移方面具有广泛应用前景,为图像生成和数据处理领域提供了新的解决方案。
CVPR23_LFDM - 潜在流扩散模型实现条件图像到视频生成
GithubLFDM图像到视频生成开源项目条件生成深度学习潜在流扩散模型
CVPR23_LFDM项目提出了一种基于潜在流扩散模型的条件图像到视频生成方法。该方法在MUG、MHAD和NATOPS数据集上展示了生成流畅自然的人脸表情和人体动作视频的能力。项目开源了预训练模型、演示代码和详细的模型训练流程,为计算机视觉研究提供了有价值的资源。
LFM - 潜空间流匹配实现高效图像生成
Flow MatchingGithubPyTorch图像生成开源项目潜在空间生成模型
LFM项目创新性地将流匹配应用于预训练自编码器的潜空间,显著提升高分辨率图像生成的效率。这种方法不仅在计算资源有限的情况下保持了图像质量,还首次将条件生成任务融入流匹配框架。经过广泛测试,LFM在多个数据集上均取得了优异的定量和定性结果。
pbdl-book - 将深度学习与物理模拟融合 革新数值计算方法
GithubPDE问题Physics-based Deep Learning开源项目数值方法深度学习物理模拟
Physics-based Deep Learning book探讨了深度学习在物理模拟中的应用,重点关注基于场的模拟。内容涵盖监督学习、物理约束、可微分模拟和强化学习等主题,并提供Jupyter notebook实例。该书致力于结合数据驱动方法和传统数值技术,以提升模拟性能。通过流体动力学和不确定性量化等案例,展示了物理深度学习在计算效率和精度方面的应用前景。书中深入探讨了深度学习与物理知识的结合方式,同时保留了对数值方法的深入理解。实例说明如何利用深度学习解决PDE问题,强调了物理约束在学习过程中的重要性。此外,还介绍了差分物理训练和改进的学习方法,为读者提供了全面的物理深度学习入门指南。
KoopmanLab - Koopman神经算子 高效求解非线性偏微分方程
GithubKoopmanLabKoopman神经算子偏微分方程开源项目机器学习物理方程求解
KoopmanLab是一个开源的Koopman神经算子包,基于PyTorch开发。该项目结合机器学习和动力系统理论,提供了一种无网格方法来求解非线性偏微分方程。KoopmanLab实现了多种模型,如KNO和ViT-KNO,并配备完整的数据处理、训练和测试工具。它可应用于Navier-Stokes方程和浅水方程等物理模拟场景,为研究人员提供了高效灵活的计算框架。
Physics3D - 基于视频扩散的3D高斯体物理属性学习框架
3D GaussiansGithubPhysics3D开源项目模拟渲染物理动力学视频扩散
Physics3D是一个创新的3D场景物理仿真框架,结合了3D高斯体和视频扩散模型。该项目提供统一的仿真-渲染管线,包含训练代码和合成数据集。通过文本到视频的扩散模型,Physics3D能优化物理参数,实现各种物体的物理属性和动态行为模拟。这为计算机图形学和物理仿真研究提供了新的工具,有助于创建更真实精确的3D场景。
CamLiFlow - 双向相机LiDAR融合实现光流和场景流联合估计
CamLiRAFTGithub光流估计双向融合场景流估计开源项目计算机视觉
CamLiFlow和CamLiRAFT是利用双向相机-LiDAR融合进行光流和场景流联合估计的开源方法。这两种算法在FlyingThings3D和KITTI等数据集上实现了领先性能。CamLiRAFT改进了训练流程,增强了泛化能力,能够处理非刚性运动。该项目开源了预训练模型、结果和多数据集评估训练代码,为相关研究提供了有力基线。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号