Project Icon

jax-triton

JAX与Triton集成实现GPU计算加速

jax-triton项目实现了JAX和Triton的集成,让开发者能在JAX中使用Triton的GPU计算功能。通过triton_call函数,可在JAX编译函数中应用Triton内核,提高计算密集型任务效率。项目提供文档和示例,适合机器学习和科学计算领域的GPU计算优化需求。

jax - 高性能科学计算和机器学习的Python加速库
GPU加速GithubJAXXLA开源项目神经网络自动微分
JAX是一个专为高性能数值计算和大规模机器学习设计的Python库。它利用XLA编译器实现加速器导向的数组计算和程序转换,支持自动微分、GPU和TPU加速。JAX提供jit、vmap和pmap等函数转换工具,让研究人员能够方便地表达复杂算法并获得出色性能,同时保持Python的灵活性。
jaxopt - JAX驱动的高性能优化器库
GithubJAXopt优化器可微分开源项目批处理硬件加速
JAXopt是基于JAX的优化器库,提供硬件加速、批处理和可微分的优化算法。支持GPU和TPU,可自动向量化多个优化问题实例,并支持优化解的微分。目前正与Optax合并,处于维护模式。适用于机器学习和科学计算领域的优化任务。
triton - 开源高效深度学习原语编程语言与编译器
GPU编程GithubLLVMTriton开源项目深度学习编译器
Triton是一种开源编程语言和编译器,专为编写高效的自定义深度学习原语而设计。它提供了一个兼具高生产力和灵活性的开发环境,性能优于CUDA,灵活性超过其他领域特定语言。Triton支持NVIDIA和AMD GPU平台,提供完善的文档和教程。用户可通过pip轻松安装,也支持源代码构建。该项目持续更新,最新版本进行了大量性能优化和问题修复。
tf2jax - 实验性TensorFlow到JAX函数转换库
GithubJAXTF2JAXTensorFlow函数转换开源项目机器学习
tf2jax是一个实验性库,用于将TensorFlow函数和计算图转换为JAX函数。它支持SavedModel和TensorFlow Hub格式,使现有TensorFlow模型能够在JAX环境中重用。该库提供透明的转换过程,便于调试和分析。tf2jax支持自定义梯度和随机性处理,并提供灵活的配置选项。尽管存在一些限制,tf2jax为JAX用户提供了一种集成TensorFlow功能的有效方法。
pytriton - 优化Python环境下NVIDIA Triton推理服务器的应用
GithubNVIDIAPyTritonPython框架开源项目推理服务机器学习模型
PyTriton是一款类似Flask/FastAPI的框架,旨在优化NVIDIA Triton推理服务器在Python环境中的应用。该框架支持直接从Python部署机器学习模型,具有原生Python支持、框架无关性和性能优化等特点。通过简洁的接口,PyTriton简化了模型部署、性能优化和API开发过程。不论使用PyTorch、TensorFlow还是JAX,开发者均可将Python代码轻松转换为HTTP/gRPC API。
evojax - 基于JAX的高性能神经进化工具包
EvoJAXGithubJAX开源项目机器学习硬件加速神经进化
EvoJAX是基于JAX库开发的神经进化工具包,支持在多个TPU/GPU上并行运行神经网络。通过在NumPy中实现进化算法、神经网络和任务,并即时编译到加速器上运行,EvoJAX显著提升了神经进化算法的性能。该工具包提供了多个示例,涵盖监督学习、强化学习和生成艺术等领域,展示了如何在几分钟内完成原本需要数小时或数天的进化实验。EvoJAX为研究人员提供了一个高效、灵活的神经进化开发平台。
awesome-jax - 自动微分与XLA在高性能机器学习中的应用
GithubJAXXLA编译器加速器开源项目机器学习自动微分
该页面收录了JAX相关的优质库、项目和资源,旨在帮助机器学习研究人员在GPU和TPU等加速器上实现高性能计算。资源涵盖神经网络库、强化学习工具和概率编程等多个领域,并提供了详细的库介绍、学术论文和教程。用户可以找到如Flax、Haiku、Objax等知名库,以及新兴的FedJAX、BRAX等库,适用于机器学习和科研项目中使用JAX进行快速原型开发和高效计算。
purejaxrl - JAX强化学习框架实现千倍性能提升
GithubJaxPureJaxRL并行训练开源项目强化学习性能优化
PureJaxRL是一个端到端JAX强化学习框架,将整个训练流程(包括环境)实现在JAX中。通过JIT编译和避免CPU-GPU数据传输,在GPU上并行运行多个智能体时,性能比PyTorch实现提升1000倍以上。框架支持使用JAX的jit、vmap等功能优化训练流程,实现高效并行训练、快速超参数调优和元进化算法探索。
blackjax - JAX贝叶斯采样库 支持CPU和GPU运算
BlackJAXGPUGithubJAX开源项目概率编程采样器
BlackJAX是一个为JAX开发的贝叶斯采样库,支持CPU和GPU计算。它提供多种采样器,可与概率编程语言集成。适用于需要采样器的研究人员、算法开发者和概率编程语言开发者。其模块化设计便于创建和定制采样算法,促进采样算法研究。BlackJAX通过简洁API和高性能,连接了简单框架与可定制库。
gymnax - JAX驱动的高效强化学习环境集合
GithubJAXgymnax加速计算开源项目强化学习环境仿真
gymnax是基于JAX构建的强化学习环境库,充分利用JAX的即时编译和向量化功能,显著提升了传统gym API的性能。该库涵盖经典控制、bsuite和MinAtar等多种环境,支持精确控制环境参数。通过在加速器上并行处理环境和策略,gymnax实现了高效的强化学习实验,尤其适合大规模并行和元强化学习研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号